Savitribai Phule Pune University Faculty of Science & Technology

Curriculum

FOR Third Year (T.Y.) B.Tech. Biotechnology

(Choice Based Credit System) (2019 Course)

(With Effect from Academic Year 2021-22)

	Syllabus	Sav For Thi (With	itribai ird Yea 1 effect	Phule ar B.Te from	Pune ech. Bi Acade	Univer io-Tecl mic Ye	sity, P molog ear 202	une y (2019 21-22)	9 Cou	rse)				
				Ser	nester	-V							~	
Course Code	Course Name	ame Teaching Scheme (Hours/Week)			H	Examination Scheme and Marks				Credits				
		TH	PR	TUT	ISE	ESE	TW	PR	OR	Total	TH	PR/O R	TUT	Tota
315461	Analytical Techniques	3	-	-	30	70	-	-	-	100	-3	-	-	3
315462	Material Balances and Stoichiometry	3	-	-	30	70	25	-	5	125	3	-	-	3
315463	Genetic Engineering	3	-	-	30	70	-		Θ	100	3	-	-	3
315464	Introduction to Immunology	3	-	-	30	70	~	Ð	-	100	3	-	-	3
315465	Elective I	3	-	-	30	70	0		-	100	3	-	-	3
315466	Analytical Techniques Lab	-	4	-		-	Y	50	-	50	-	2	-	2
315467	Genetic Engineering Lab	-	4	-	\bigcirc	-	-	-	50	50	-	2	-	2
315468	Elective I Lab	-	• ²			-	25	-	-	25	-	1	-	1
315469	Seminar	-	\mathbf{X}^{-}	1	-	-	50	-	-	50	-	-	1	1
315470	Audit course 5	C	5	_	-	-	-	-	-	_	-	-	-	-
Fotal		15	1	1	150	350	100	100)	700	15	00	5	21
315465: E	lective I Options		<u> </u>		31	15470	Audi	it Cou	irse (Optior	ns	<u> </u>		
315465 (A)	Enzyme Technology				31	5470	(A) Li	festyle	e and	Nutriti	on			
315465 (B)	Good Laboratory Practic	ces and			31	315470 (B) Essence of Indian Traditional								
	Good Manufacturing Pra	actices					K	nowie	age					
315465 (C)	Agricultural Biotechnol	ogy												
Abbreviatio	ns:													
TH : Theory	TW :	Term W	ork		PR	R : Prac	tical							
OR : Oral	TUT	: Tutoria	ıl											
Note: Stude the list of au	nts of third year (Biotech dit courses prescribed by B	nology) (oS (Biote	can opt	t any o ogy Eng	ne of t gineeri	he aud ng)	lit cour	rse fro	m					

	Syllabus	Sa For T (Wi	witriba hird Yo ith effeo	i Phule ear B.T et from	e Pune Tech. H Acad	e Univers Bio-Techi lemic Yea	ity, Pu nology ar 2021	ne (2019 l-22)	Cours	e)				
				Se	meste	r-VI								
Course Code	rse ode Course Name Teaching Scheme (Hours/Week)				1	Examination Scheme and Marks				Credits			5	
		TH	PR	TUT	ISE	E ESE	TW	PR	OR	Total	тн	PR/O R	TUT	Tota
315471	Fermentation Technology	3	-	-	30) 70	-	-	-	100	3		-	3
315472	Mass Transfer	3	-	-	30	70	-	-		100	3		-	3
315473	Bioseparation Engineering	3	-	-	30	70	-	-5	-	100	3	1	-	3
315474	Elective II	3	-	-	30	70	50		R.	150	3	-	-	3
315475	Fermentation Technology Lab	-	4	-	-	-	-	O	50	50	-	2	-	2
315476	Mass Transfer Lab	-	2	-	-		50	-	-	50	-	1	-	1
315477	Bioseparation Engineering Lab	-	4	-	- (0	-	50	-	50	-	2	-	2
315478	Audit course 6	-	_				_	_	_	_	_		_	-
315479	Internship**	-	-			-	100* *	-	-	100		-	-	4**
	Total	12	10	-	120	280	200	10	00	700	12	5	<u> </u>	21
Internsh Internshi	ip** : p guidelines are provided in	the c	ourse	curric	ulum.					<u> </u>		I		
315474 315474(: Elective II Options A) Instrumentation and Proces	s Con	trol		3	315478 A 315478 (A	Audit A)Tecl	Cour hnical	r se O j Comn	ptions nunicat	ion			
315474(315474(B) Food BiotechnologyC) Data base management sys	tems			3	315478 (]	B) Fir	nancia	l Mana	agemen	t			
Abbrevia TH : The OR : Ora Note: Stu	ations: ory TW : Te 1 TUT : 1 udents of third year (Biotechnol	erm Wo Tutorial	ork I an ont :	any op	PR	: Practical]	from						
the list of	f audit courses prescribed by BoS	(Biote	chnolog	y Engi	neerin	g)	JUISES	11 0111						

Semester – V Jour and the strength of the s

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course) 315461: Analytical Techniques					
Teaching Scheme:	Credit	Examination Sch	eme:		
Theory: 03 Hrs/ Week	03	In-Sem (Theory): 30 Mark End-Sem (Theory): 70 Ma Total: 100 Marks	irks		
Prerequisite Courses, if any:			S.		
Basic knowledge of Biology, Cl	nemistry and Mathemati	ics			
Companion Course, if any:					
Course Objectives:		5			
1. To bring understanding of an	alytical methods used ir	1 biotechnology			
2. To acquire knowledge of qua	litative & quantitative a	nalysis techniques for biologi	cal samples		
3. To introduce the state of art r	nethods for sample anal	ysis	Ĩ		
Course Outcomage On commission					
CO1: Understand basic principle the Analytical processesCO2: Learn chromatography so	es of Analytical Techni eparation technique to	ques and importance of samp determine the components	le preparation for of a mixture for		
CO3: Acquire skills in state-of- macromolecules in biolog	analysis of sample. art electrophoresis laborical samples	pratory method for separation	n and analysis of		
CO4: Understand indispensable studies.	centrifugation method a	as tool of modern biochemist	ry for subcellular		
CO5: Learn spectroscopy techno composition of a sample.	blogy to detect, determi	ne, or quantify the molecular	and/or structural		
CO6: Learn advanced spectrosco	py techniques and their	applications			
C	Course Co	ontents			
Unit I	Introd	luction	(8 Hrs.)		
Basic principles of analytical analysis: History and developm Experimental Studies, Experime of errors, determinate and indet accuracy and precision, measu sample preparation for different	techniques, Summary nent, Introduction to n ental Errors, Statistical I erminate errors, minimi res of dispersion and o analytical techniques	of experimental methods cu nodern approaches in Bioana Parameters for Validation of a ization of errors, constant and central tendency, General pr	arrently available for alysis and Bioassays, an Experiment, Types I proportionate errors, inciples of biological		

Mapping of Course Outcomes for Unit I	CO1: Attain technical knowledge of using magnification and resolution technology of various microscopes for analyzing biological samples.					
Unit II	Chromatography	(8 Hrs)				
Introduction, principles- distribution coefficient, RF value Types of chromatographs a) Thin layer, HPTLC, paper chromatography b) Column chromatography – gel filtration, ion-exchange, affinity chromatography, c) adsorption chromatography, Applications in biotechnology.						
Mapping of Course Outcomes for Unit II	CO2: Learn chromatography separation technique to components of a mixture for qualitative & quantitat sample.	determine the ive analysis of				
Unit III	Electrophoresis & Visualization	(8 Hrs)				
Introduction, Theory, working principles, instrumentation and applications of gel electrophoresis, capillary electrophoresis, supporting matrices. Electrophoresis of proteins- SDS PAGE, native PAGE, Nucleic acids – Agarose, Pulse field gel electrophoresis.& Staining						
for Unit III	separation and analysis of macromolecules in biological samples					
Unit IV	Basic Separation Techniques	(6 Hrs)				
Basic separation techniques: Centrifugation - Ultracentrifugation, Gradient centrifugation, Filtration – Constant pressure and volume filtration, Rate of filtration, Filter medium and filter cake resistance, specific cake resistance, Types of Filters, Washing and dewatering of filter cakes						
Mapping of Course Outcomes for Unit IV	biochemistry for subcellular studies.	tool of modern				
Unit V	Spectroscopy-I	(8 Hrs)				
Introduction, Beer-Lambert's law, Instrumentation, Principle and applications of UV-visible spectroscopy (chromophores in proteins), instrumentation (spectrophotometer and colorimeter), study of molecular extinction coefficient, Spectrofluorometry – Principle, Energy Diagram, Instrumentation, Applications, Case studies, Quantitative Spectrophotometric analysis.						
Mapping of Cours <mark>e</mark> Outcomes for Unit V	CO5: Learn spectroscopy technology to detect, determine quantify the molecular and/or structural composition of a	, or sample.				
Unit VI	Spectroscopy-II	(6 Hrs)				
Mass Spectrometry : Introduct Spectroscopy: Introduction of th Steady-state and time- resolved Inf	ion of theory, ionization methods, molecule fragme eory, 1H and 13C NMR, Spin-Spin Coupling, Infrared frared spectroscopy: from overview to potential applications	entation, NMR I Spectroscopy:				
Mapping of Course Outcomes for Unit VI	CO6: Learn application of radiolabeling technique in dia research.	gnostic &				

Learning Resources

Text Books:

- Wilson and Walker's 'Principles and Techniques of Biochemistry and Molecular Biology' Cambridge University Press 2018, Online ISBN:9781316677056; DOI:https://doi.org/10.1017/9781316677056
- 2. Fundamentals and Techniques of Biophysics and Molecular Biology by Pranav Kumar

Pathfinder Publications 3rd Edition 2019.

Reference Books:

- 1. Bio analytics: Analytical Methods and Concepts in Biochemistry and Molecular Biology Friedrich Lottspeich (Editor), Joachim W. Engels (Editor) ISBN: 978-3-527-33919-8.
- 2. Analytical Biotechnology by Thomas G. M. Schalkhammer Springer ISBN-13 : 978-8181281975

MOOC / NPTEL Courses link / Any other e- resources link:

For example

- 1. NPTEL course Analytical Technologies in Biotechnology by Dr. Ashwani K. Sharma IIT Roorkee <u>https://nptel.ac.in/courses/102/107/102107028/</u>
- 2. NPTEL course Bioanalytical Techniques and Bioinformatics Web course by Dr. Nitin Chaudhary Department of Biotechnology IIT Guwahati

https://nptel.ac.in/courses/102/103/102103044/

Virtual LAB Link:

- 1. Biological Image Analysis Virtual Lab <u>https://vlab.amrita.edu/?sub=3&brch=278</u>
- 2. Agilent Technologies https://www.youtube.com/user/agilent/video

Teaching Scheme:	Credit	Examination Scheme:	
Theory: 03 Hrs/ week	03	In-Sem (Theory): 30 Marks End Sem (Theory): 70 Marks Term Work: 25 Marks Total Marks:-125	5
rerequisite Courses, if any: Bas	ic concepts of fundame	ntal and derived properties and their units.	
companion Course, if any:			
Course Objectives:		S	
1. To introduce the concept of basic chemical calculations inv	unit operations and unit olved in bioprocesses	it processes and develop an ability to perform	n
2. To make students conversa formulate material balances for	nt with different unit each step	operations used in the process industry an	d
3. Provide familiarity with en unit processes	ergy balance calculation	ons involved in different unit operations an	ıd
4. To make students conversation in the process industry and form	nt with different unit p nulate material balance	rocesses and chemical reactions encountere s for each step	d
5. To develop an expertise in knowledge of material and energy	n process design of is rgy balances	mportant unit operations by combining the	ie
6. To familiarize students wit calculations	h different types of fu	els, their properties and related combustic	n
Course Outcomes: On completion	n of the course, learner	will be able to –	
CO1: Sort a bioprocess into calculations to them	different unit operatio	ns and processes and apply basic chemics	al
CO2: Apply material balances processes. CO3: Quantify he processes	to different physical stat and energy change	teps in a process and thus efficiently designed accompanying unit operations and un	n it
CO4: Design processes requirin	ng physical, chemical a	nd biochemical changes	
CO5: Apply energy balances efficiently design a process.	s to difference proces	sses involving chemical changes and thu	15
CO6: Predict efficiency of com	bustion and analyze the	e requirements and product formation in suc	h

Course Contents

Unit I

(06 Hrs)

Basic Chemical Calculations: Introduction to unit processes and operations and their symbols, process flow sheet, Basic Chemical Calculations including mole, equivalent weights, solids, liquids, solutions and their properties, properties of gases.

Mapping of Course Outcomes for Unit I	CO1:Sort a bioprocess into different unit operations an and apply basic chemical calculations to them	d processes			
Unit II	Coi	(08 Hrs)			
Material Balances without Biologic recycling and bypassing operations, in	cal/ Chemical Reactions: Concept, material balance atroduction to unsteady state processes.	e calculations,			
Mapping of Course Outcomes for Unit II	CO2: Apply material balances to different physical ste process and thus efficiently design processes.	ps in a			
Unit III		(08 Hrs)			
Energy Balances: Concept of conserv transition: latent heats & sensible heat	ation of energy, heat capacity of pure substances and m	nixtures, Phase			
Mapping of Course Outcomes for Unit III	CO3: Quantify heat and energy changes accompanying operations and unit processes	g unit			
Unit IV		(06 Hrs)			
Material Balances involving Biological/ Chemical Reactions: Concept, material balance calculations, recycling and bypassing operations.					
Mapping of Course Outcomes for Unit IV	CO4: Design processes requiring physical, chemical an biochemical changes.	nd			
Unit V 🔨		(06 Hrs)			
Energy balances for a process involving chemical reaction: Standard Heat of Formation, Standard heat of reaction, Standard heat of combustion.					
Mapping of Course Outcomes for Unit V	CO5: Apply energy balances to difference processes inv chemical changes and thus efficiently design a process.	olving			
Unit VI		(08 Hrs)			
Combustion: Calorific values, coal, li calculations.	quid fuels, gaseous fuels, air requirement and flue gase	es, combustion			
Mapping of Course Outcomes for Unit VI	CO6: Predict efficiency of combustion and analyze the and product formation in such operations for optime fuels.	e requirements um use of the			

Learning Resources

Text Books:

B. I. Bhatt, S.B. Thakore, "Stoichiometry" 5th Edition, Tata McGraw Hill Publications, New Delhi (2011)

K.A. Gavhane, "Introduction to process calculations stoichiometry", 22nd Edition, Nirali Prakashan (2009)

Reference Books:

1. David M. Himmelblau "Basic Principles and Calculations in Chemical Engineering" 6th Edition, Eastern Economy Edition, Prentice Hall of India

NPTEL Courses link.

NPTEL Course "Material and Energy Balances" https://nptel.ac.in/courses/102/106/102106069/

NPTEL Course "Basic Principles and Calculations in Chemical Engineering".

https://nptel.ac.in/courses/103/103/103103165/

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course) 315463: Genetic Engineering

Teaching Scheme:	Credit	Examination Scheme			
Theory: 3 Hrs / week	3	In - Sem (Theory): 30 Marks			
		End - Sem (Theory): 70 Marks Total Marks :-100			
Prerequisite Courses, if any:					
Knowledge of Genetics and Molecular Biology					
Companion Course, if any:					
Course Objectives:					
1. To give Introduction to various to	echniques used in C	enetic Engineering.			
2. Give an overview of recombinan	t DNA technology.				
3. To impart knowledge of construct	tion of various libr	aries.			
4. To give an overview of recombin	ant protein product	ion and problems associated there wi	th.		
5. To teach the various advanced te	chniques to transfer	genes to animals and plants			
6. To introduce the various applicat	ions of rDNA tech	nology			
Course Outcomes: On completion of	of the course, learne	er will be able to –			

CO1: Acquire knowledge of various techniques and tools in genetic engineering and DNA sequencing methods.

CO2: Get an overview of recombinant DNA technology and learn tools and techniques in rDNA technology like DNA Manipulative enzymes, cloning vectors and isolation of gene of interest.

CO3: Acquire skills on techniques of construction of genomic DNA library and cDNA library and the screening methods.

CO4: Identify problems associated with production of recombinant proteins and protein purification and devising Strategies to overcome problems when cloning in bacteria and yeasts.

CO5: Know how to transfer genes to bacteria, animals and plants using various different methods like gene gun, electroporation, viral vectors etc.

CO6: Learn rDNA techniques for production of pest resistant plants, growth hormones, vaccines, gene therapy in expression system.

Course Contents Unit I (8Hrs)

Techniques and tools in genetic engineering: Blotting techniques, PCR-design and optimization, PCR types- RTPCR, colony PCR, real time PCR.

DNA sequencing methods: sequencing strategies, Sangers Sequencing, pyro sequencing, automation, base calling, applications and impact of sequencing, Human genome project, micro arrays.

Mapping of Course	CO1: Acquire knowledge of various techniques and tools in	genetic				
Outcomes for Unit I	engineering and DNA sequencing methods.					
Unit II	S	(8Hrs)				
Enzymes used in GE: Restriction enzymes, DNA ligase: adapters, linkers, homopolymer tailing						
Cloning vectors: Plasmids,	basics of plasmids, lambda phage, insertional, replacement l	ambda vectors,				
in-vitro packaging, M13 vect	ors, phagemids, cosmids, Multiple cloning sites, selection mar	kers,				
Expression Vectors, artificial chromosomes (BACs, YACs)						
Mapping of Course	CO2: Get an overview of recombinant DNA technology and learn tools and					
Outcomes for Unit II	techniques in rDNA technology like DNA manipulative enzymes, cloning					
	vectors and isolation of gene of interest.					
Unit III		(8Hrs)				
Gene Cloning strategies: get	nomic libraries, PCR in cloning, cDNA libraries, amplification	of gene				
libraries, strategies for screen	libraries, strategies for screening of libraries: hybridization, colony PCR, immunological screening, blue					
white selection, selection based on nutrient deficiency						
white selection, selection base	ed on nutrient deficiency					
white selection, selection base Mapping of Course	ed on nutrient deficiency CO3: Acquire skills on techniques of construction of genomic	DNA library				
white selection, selection base Mapping of Course Outcomes for Unit III	ed on nutrient deficiency CO3: Acquire skills on techniques of construction of genomic and cDNA library and the screening methods.	DNA library				
white selection, selection base Mapping of Course Outcomes for Unit III Unit IV	ed on nutrient deficiency CO3: Acquire skills on techniques of construction of genomic and cDNA library and the screening methods.	c DNA library (8 Hrs)				
white selection, selection base Mapping of Course Outcomes for Unit III Unit IV Cloning in bacteria, competer	ed on nutrient deficiency CO3: Acquire skills on techniques of construction of genomic and cDNA library and the screening methods. ncy, broad host range plasmids, copy number significance, c	coning, onde c DNA library (8 Hrs) cloning in gram				

yeast, promoters, significance of Pichia pastoris, YAC's classical and circular

Mapping of Course Outcomes for Unit IV	CO4: Identify problems associated with production of recom and protein purification and devising strategies to overcome cloning in bacteria and yeasts.	binant proteins problems when
Unit V		(8Hrs)

Gene transfer technologies: Transformation, Transfection, Electroporation, Gene transfer to animal cells: bacterial vectors, Viral vectors - Adenovirus, Baculovirus, retro virus, strategies for transformation of animal cells: Pronuclear microinjection, Recombinant retroviruses, transfection of ES cells to get chimeras, Gene transfer to plants: Callus culture, protoplast transformation, strategies Agrobacterium mediated, Particle

bombardment, In planta transformation, plant viruses

Mapping of Course	CO5: Know how to transfer genes to bacteria, animals and plants using
Outcomes for Unit V	various different methods like gene gun, electroporation, viral vectors etc.

Unit VI	(8Hrs)

Modification of bacteria and viruses: live vaccines, Animal transgenesis - Applications, Transgenic plants – Applications, Applications of rDNA technology in health and agriculture: Humulin, Hep B, factorVIII, DNA diagnostics, Bt cotton, and Golden rice. DNA markers for improvement of quality and yield of crops, Gene therapy

Mapping of Course Outcomes for Unit VI	CO6: Learn rDNA tech hormones, vaccines, get	niques for production ne therapy in expressi	of pest resiston system	stant plants, growth			
	Learning Resources						
Text Books: Principles of Gene manipulat From Genes to Genomes: Co (Wiely Publishers)	ion and Genomics by Proncepts and applications	imrose and Twyani of DNA technolog	man (Black gy by J. W.	well Publishers) Dale and M.V.Sch	antz		
Reference Books: Molecular biotechnology by I	Pasternack and Glick	0	2				
From Genes to clones by Wir	macker. PANIMA						
Gene cloning and DNA Analy	ysis: An introduction (4)	h edition) by T. A.	Brown				
Molecular Cloning: A Laboratory Manual (<i>Fourth Edition</i>) By Michael R. Green, Howard Hughes Medical Institute, University of Massachusetts Medical School; Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, Australia							
MOOC / NPTEL Cou	rses link / Any oth	er e- resources	link:				
For example 1. NPTEL Course https://nptel.ac.in/courses/10 2.NPTEL Course on Genetic https://nptel.ac.in/courses/10	on Genetic)2/103/102103013/ Engineering Theory and)2/103/102103074/	Engineering Applications	and	Applications	:		
Virtual LAB Link:							
1. Molecular Biology Virtual Lab I:- <u>http://mbvi-au.vlabs.ac.in/</u>							
2. Molecular Biology Virtual I	.ab II:- <u>https://mbvii-au</u>	vlabs.ac.in/					

Savitribai Phule Pune University					
315464 : Introduction to Immunology					
Teaching Scheme: Credit Examination Scheme:					
Theory: 03 hrs. / week	03	In-Sem (Theory): 30 Marks			
		End Sem (Theory): 70 Mark	xs		
Propagnisita Courses if only		Total Marks :-100			
Knowledge of cell biology and mic	robiology.				
Companion Course, if any: -			G		
Course Objectives:		C			
1. To introduce concepts of defense	e mechanism in host		2		
2. To learn about the structural and	functional features	of the components of the immu	ne system.		
3. To bring understanding of the n immune responses in host.	nechanisms involved	l in innate and adaptive, humor	al and cell mediated		
4. To learn the basic immunologica	al techniques for diag	gnostic approach in immunolog	у.		
Course Outcomes: On completion of the course, learner will be able to –					
CO1: Explain what immunology is and understand the basics of natural and adaptive, specific and nonspecific line of defense in host.					
CO2: Define structural and function	onal role of cells, or	gans and tissues of immune syst	tem.		
CO3: Understand the antigen-antibody concepts with cellular/molecular theories of humoral immune responses in host.					
CO4: Explain the cellular and molecular processes involved in cell-mediated immunity, in state of health and disease.					
CO5: Explain the hypersensitivity and autoimmunity in state of health and disease.					
CO6: Develop skills in immunological diagnostic techniques					
Course Contents					
Unit I	Basic con	cepts in immunology	(6 Hrs)		
Overview of immune system: Historical Perspective, basic concepts - Immunity, Innate immunity: Types and factors influencing innate immunity, Acquired immunity: Active and Passive, Nonspecific defense mechanism- Physiological barriers against infection, First and Second line of defense. Humoral and cellular immune response.					

Manning of Course	CO1: Evoloin what is immunology and & immuno system Underste	nd the netural		
Outcomes for Unit I COI: Explain what is immunology and & immune system. Understand the natural and adaptive, specific and nonspecific line of defense in host.				
Unit II	Immune System	(6Hrs)		
Organ and tissues of immune system- Primary and secondary lymphoid organs. Cells of immune system- Structure and functions of monocytes, macrophages, granulocytes, mast cells, dendritic cells, NK cells, lymphocytes-B and T cells development, maturation and activation of immune cells.				
Mapping of Course Outcomes for Unit II	CO2: Define structural and functional role of cells, organs and tissues of immune system.			
Unit III	Adaptive (Humoral) immunity 🥂 🌈	(8 Hrs)		
Antigens: Chemical nature, types of antigen and factors affecting antigenicity; hapten, adjuvants. Antibody: Immunoglogilins: Structure and function, types of immunoglobulin, Adaptive Immunity Humoral immunity: Activation of B cells, theories of antibody production- clonal selection theory. Immune response: Primary and secondary, Organization and expression of Ig genes, generation of antibody diversity, Monoclonal Antibody, Hybridoma Technology.				
Mapping of Course Outcomes for Unit III	CO3: Understand the antigen-antibody concepts with cellular/molecular theories of humoral immune responses in host.			
Unit IV	Cell mediated immunity and Major Histocompatibility	(8 Hrs)		
Cell mediated immunity, TCR, Mechanism of cell mediated immune response: Cytokines and Complement system, phagocytosis, inflammation, Major Histocompatibility Complex (MHC), Antigen processing and presentation, Transplantation immunology: Graft rejection, Graft-versus-Host and ethics.				
Mapping of Course	CO4: Explain the cellular and molecular processes involved in cell-mediated			
Outcomes for Unit IV	immunity, in state of health and disease.			
Unit V	Hypersensitivity and Autoimmunity	(8 Hrs)		
Hypersensitivity-Types I to IV, immediate hypersensitivity, Anaphylaxis, Cytotoxic, Delayed type of hypersensitivity, Immunodeficiency, Allergy test, Autoimmunity-Organ Specific and Systemic Autoimmune diseases.				
Mapping of Course	Mapping of Course CO5: Explain the hypersensitivity and autoimmunity in state of health and			
Unit VI	Diagnosting	(9 IIn g)		
Unit VI				
	Diagnostics	(0 1115)		
Antigen – antibody inter test, Complement fixation passive immunization, r whole organism purified vaccines.	actions- principles and applications, Precipitation-Gel Diffusion test, on test, Fluorescent antibody test, RID, ODD, ELISA, RIA, Vacciole of adjuvants, designing vaccines for active immunization, types macromolecules, DNA vaccines, recombinant DNA vaccines, multi	agglutination ines-Active & s of vaccines- valent subunit		

Mapping of Course)
Outcomes for Unit	VI

Learning Resources

Text Books:

- 1. Kuby Immunology (8th Edition)- Jenni Punt, Sharon Stranford, Patricia Jones, Judith A Owen. WH Freeman, 2019, Ebook 9781319188535.
- Roitt's Essential Immunology (Essentials) 13th Edition Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt.Wley Blakswell Scientific Publications, Oxford, 2017. ISBN-13: 978-1118415771

Reference Books:

- 1. Fundamentals of Immunology: Paul W.E. (Eds.) Raven Press, New York, 1988 Antibodies A laboratory Manual: Harlow and David Lane (1988), Cold spring harbor laboratory
- 2. Janeway's Immunobiology by K. Murphy, P. Travers and M. Walport, Publisher: Garland Science.

MOOC / NPTEL Courses link / Any other e- resources link:

For example

1. SWAYAM Immunology By Prof. Sudip Kumar Ghosh, Prof. Agneyo Ganguly IIT Kharagpur

https://onlinecourses.nptel.ac.in/noc20_bt43/preview

https://nptel.ac.in/courses/102/105/102105083/

2. NPTEL course Cellular and molecular immunology by Dr Sachin Kumar

https://nptel.ac.in/courses/102/103/102103038/

Virtual LAB Link:

Immunology Virtual Lab I & II

https://vlab.amrita.edu/?sub=3&brch=69

https://vlab.amrita.edu/?sub=3&brch=70

Th	Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 course)				
315465 : Elective I-A: Enzyme Technology					
Teaching Scheme: Credit Examination Scheme:					
Theory: 3 hrs. / week	03	In-Sem (Theory): 30 Marks			
		End Sem (Theory): 70 Marks			
		Total Marks :-100			
Prerequisite Courses, if any	:	·	0		
Basic knowledge of Biochen	nistry II	<i>.C</i>			
Companion Course, if any: -	-				
Course Objectives:		S.			
1. To provide an understandi	ng about basics of enzy	ymes molecule			
2. To understand the function	ning and kinetics of ena	zyme			
3. To understand role of coer	nzymes in enzyme cata	lyzed reactions			
4. To know about inhibition	4. To know about inhibition of enzyme				
5. To make acquainted about	various techniques of	immobilization			
6. To understand role of immobilized enzymes					
Course Outcomes: On completion of the course, learner will be able to –					
CO1: Understand basic inform	CO1: Understand basic information about enzyme molecule				
CO2: Know the functioning of	of enzyme molecule				
CO3: Recognize the role coer	nzymes				
CO4: Understand the mechan	CO4: Understand the mechanism of enzyme inhibition				
CO5: Understand process of enzyme immobilization					
CO6: Students will get acquainted with various applications of immobilized enzyme					
Course Contents					
Unit I			(7Hrs)		
Enzymes – Naming and classification of enzymes, enzyme cofactors, kinetics of enzyme catalyzed reactions, Michaelis Menten equation, effect of pH, temperature on enzyme activity, purification of enzyme,					

Mapping of Course Outcomes	CO1: Understand basic information about enzyme r	nolecule
for Unit I		
Unit II		(8 Hrs)
Substrate specificity of enzyme, I base catalysis, proximity and or environment, regulatory enzyme,	Factors leading to rate enhancement of enzyme cataly ientation effects, covalent catalysis, strain or distor isozymes, multi-enzymes	zed reactions: Acid- tion and change in
Mapping of Course Outcomes for Unit II	CO2: Students will understand the functioning of en	nzyme Molecule
Unit III		(7 Hrs)
Coenzymes - Coenzyme A, Thian Coenzyme II Biotin and pyridoxa	mine diphosphate, pyridine nucleotides, flavins and li l phosphate	poic acid
Mapping of Course Outcomes for Unit III	CO3: Students will recognize the role coenzymes	7
Unit IV		(8 Hrs)
Enzyme inhibition: feedback is competitive, uncompetitive), allo	nhibition, irreversible and reversible inhibition steric inhibition.	(competitive, non-
Mapping of Course Outcomes for Unit IV	CO4: Understand the mechanism of enzyme inhibition	on
Unit V		(8 Hrs)
Immobilization of enzyme by u methods like entrapment, adsorpt	ising various matrices, Immobilization of enzyme ion, cross linking etc., Kinetics of immobilized enzym	by using different ne
Mapping of Course Outcomes	CO5: Understand process of enzyme immobilization	l
Unit VI	0	(7 Hrs)
Unit VI Application of immobilized enzy in chemical industry and immobil	me in food industry, in development of biosensor, in lized enzymes in pharmaceutical industry with case st	(7 Hrs) mobilized enzymes udy.
Unit VI Application of immobilized enzy in chemical industry and immobil Mapping of Course Outcomes for Unit VI	me in food industry, in development of biosensor, im lized enzymes in pharmaceutical industry with case st CO6: Students will get acquainted with vario immobilized enzyme	(7 Hrs) mobilized enzymes udy. us applications of

Learning Resources

Text Books:

D J Voet, J G Voet, C W Pratt, "Principles of Biochemistry", 3rd ed., John Wiley & Sons, Inc. 2008 D T. Plummer, "An Introduction to practical biochemistry", Tata McGraw Publishing Company Ltd, 1988

Reference Books:

- 1. J H Weil, "General Biochemistry", New Ages International (P) Ltd.1997.
- 2. J M Berg, JLTymoczko, LStryer, "Biochemistry", 6thed., FreemanWH&Company, New York, 2007
- 3. D L Nelson, M M Cox "Principles of Biochemistry", 4th ed., W.H. Freeman and company, New York, 2007

MOOC / NPTEL Courses link / Any other e- resources link:

For example

- 1.NPTEL Course "Enzyme science and Engineering "https://nptel.ac.in/courses/102/102/102102033/
- 2. NPTEL Course "Biochemistry" https://nptel.ac.in/courses/104/105/104105076/

Virtual LAB Link:

1. Biochemistry virtual LAB II

https://vlab.amrita.edu/?sub=3&brch=64

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course)

315465: Elective I-B: Good Laboratory Practices and Good Manufacturing Practices

Teaching Scheme:	Credit	Examination Scheme:	
Theory: 3 Hrs / week	3	In-Sem (Theory): 30 Marks	
		End Sem (Theory): 70 Marks	
		Total : 100 Marks 🛛 🖊 🦳 🟏	

Prerequisite Courses, if any: none Companion Course, if any: --

Course Objectives:

- 1. To know the objective of GMP and GLP and the various bodies overseeing it.
- 2. To impart the importance of Quality and understand the principles and implementations of Quality.
- 3. To orient students towards various GMP in pharma and food industry.
- 4. To give an overview of various quality control and inspection laws followed in the industry.
- 5. To introduce the importance of biosafety and the various hazards of not implementing them.
- 6. To give an introduction to various Quality management concepts in the industry

Course Outcomes: On completion of the course, learner will be able to -

CO1: Learn and adopt quickly in a GMP environment.

- CO2: Understand the principles and implementations of Quality
- CO3: will be able to implement GMP in pharma and food industry
- CO4: Will be able to understand the Quality control laws and implement them
- CO5: understand the importance of biosafety and other hazards

CO6: Understand various Quality management concepts in the industry

Course Contents

(6 Hrs)

Introduction to GLP

Unit I

Good laboratory practices-Introduction, WHO guidelines on GLP and GMP, History of Good Laboratory Practices, Quality assurances in Good Laboratory Practices Calibration and Validation: Introduction, definition and general principles of calibration, qualification and validation, importance and scope of validation, types of validation, validation master plan. Calibration of pH meter, Qualification of UV-Visible spectrophotometer, General principles of Analytical method Validation.

Mapping of Course Outcomes for Unit I	CO1: Learn and adopt quickly in a GMP environ	ment.
Unit II		(6 Hrs)

(6 Hrs)

Quality Standards and Quality Assurances

Quality Standards- Advantages and Disadvantages, Concept of Quality Control, Quality Assurance- Their functions and advantages, Quality assurance and quality management in industry, Total Quality Management (TQM): Definition, elements, philosophies, ICH Guidelines: purpose, participants, process of harmonization. Good documentation practices: Preparation Standard operating protocols (SOP), Batch Manufacturing Records (BMR), Master Formula, Site files, recording change controls/deviations etc.

Government and trade standards of quality Federal Food and Drug Law FDA, BSTI action and activities Other food laws (Legalization), ISO 9000 & ISO14000: Overview, Benefits, Elements, steps for registration

Mapping of Course Outcomes for Unit II	CO2: Understand the principles an	d implementations of Quality
Unit III		(6 Hrs)

Good Manufacturing Practices in Pharmaceutical and Food Industries

Types of validation in Pharma industry, Scope and importance of Validation Limitations, Cleaning Validation, Validation of Analytical Procedures as per ICH Guidelines Implications of cGMP and Food plant sanitation, schedule M and Y of Drug and Cosmetic act in India.. The regulations of cGMPs Planning of Plant Sanitation Programs and Construction factors Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials Control of rats, rodents, birds, insects and microbes. Cleaning and Disinfection: Physical and Microbiological Approach

Mapping of Course Outcomes for Unit	C	O3: will be able to implement GMP in pharma	and food
		industry	
Unit IV			(6 Hrs)

Unit IV

Quality Control

Quality Control in the industry, Various Quality Attributes of food such as size, shape, texture, color, viscosity and flavor, Sensory evaluation of food and statistical analysis, Food Regulation and Compliance, Food Inspection and Food Law, Quality Control: Quality control test for containers, rubber closures and secondary packing, Food Quality and Quality control including the HACCP system, cleanroom, Good Laboratory Practices: General Provisions, Organization and Personnel, Facilities, Equipment, Testing Facilities Operation, Test and Control Articles, Protocol for Conduct of a Nonclinical Laboratory Study, Records and Reports, **Disgualification of Testing Facilities**

Mapping of Course Outcomes for Unit IV	CO4: Will be able to understand the Quality co	ontrol laws and
5	implement them	
Unit V		(6 Hrs)

Biosafety

Introduction: Historical Background, Biosafety in Laboratory/ institution., Laboratory associated infections and other hazards, Assessment of Biological Hazards and levels of biosafety, Prudent biosafety practices in the laboratory/institution Introduction to Biological safety cabinets, Primary Containment of Biohazards, Biosafety Levels, Recommended Biosafety Levels for Infectious Agents and Infected Animals Biosafety guidelines, Government of India Guidelines, Definition of Genetically Modified Organisms (GMOs)

Mapping of Course Outcomes for Unit V	CO5: understand the importance of biosafety and other hazards	

U	nit	VI
-		

(**6Hrs**)

Concept of Quality, Total Quality Management, Quality by design, Six Sigma concept, Out of Specifications (OOS), Change control. Validation: Types of Validation, Types of Qualification, Validation master plan (VMP), Validation of utilities, [Compressed air, steam, water systems, Heat Ventilation and Air conditioning (HVAC)] and Cleaning Validation. The International Conference on Harmonization (ICH) process, ICH guidelines to establish quality, safety and efficacy of drug substances and products, ISO and relevant such quality Organizations

Mapping of Course Outcomes for Unit VI	CO6: Understand various Quality management concepts in the industry
I ea	rning Resources
Lta	ir ning resources
Text Books:	

Good Laboratory Practice Regulations, by Sandy Weinberg, Fourth Edition Drugs and the Pharmaceutical

Sciences, Vol.168

How to practice GLP by PP Sharma, Vandana Publications.

Reference Books:

- Good Pharmaceutical Manufacturing practice, Rational and compliance by John Sharp, CRC Press
- 4. Establishing a cGMP Laboratory Audit System, A practical Guide by David M.Bleisner, Wiley Publication.
- 5. Laboratory Auditing for Quality and Regulatory compliance bu Donald C.Singer, Drugs and the Pharmaceutical Sciences, Vol.150.
- 6. Drugs & Cosmetics Act, Rules & Amendments
- 7. Quality Assurance Guide by organization of Pharmaceutical Products of India.
- 8. Good Laboratory Practice Regulations, 2
- 9. Quality Assurance of Pharmaceuticals- A compendium of Guide lines and Relatedmaterials Vol I WHO Publications.
- 10. A guide to Total Quality Management- Kushik Maitra and Sedhan K Ghosh
- 11. How to Practice GMP's P P Sharma.
- 12. ISO 9000 and Total Quality Management Sadhank G Ghosh
- 13. The International Pharmacopoeia Vol I, II, III, IV- General Methods of Analysis And Quality specification for Pharmaceutical Substances, Excipients and Dosage forms
- 14. Good laboratory Practices Marcel Deckker Series
- 15. ICH guidelines, ISO 9000 and 14000 guidelines

SRUG

Savitribai Phule Pune University			
Third Year of	B.Tech. Biotechnology	(2019 course)	
315465: Electiv	ve I-C: Agricultural Biot	echnology 	
Teaching Scheme:	Credit TH 02	Examinatio	on Scheme:
Theory: 05 Hrs. / week	111 05	End Sem (Theory):	30 Marks
		Total Marks :-100	
Prerequisite Courses, if any:			~~~
Knowledge of subjects like Molecular Biol	ogy, Genetic Engineerir	g and Aseptic Techni	ques.
Companion Course, if any:		,C	+
Course Objectives:			
1. To introduce students to scope of Biote	chnology in agriculture.	05	
2. To emphasize advantages of transgenic	crops, biofertilizers, bio	pesticides and organi	c agriculture.
3. To address ethical issues and regulatory	v aspects of biotechnolo	gy in agriculture.	0
4. To recognize importance of biofertilizers, biopesticides in organic agriculture.			
Course Outcomes: On completion of the course learner will be able to _			
Course Outcomes: On completion of the course, learner will be able to –			
CO1. Students will understand global and Indian scenario of GMO			
CO2: Students will learn plant genetic engineering technologies			
CO3. Students will gain knowledge of Plant tissue culture			
CO4. Students will get know advance technology for crop improvement.			
CO5. Student learn importance of biofertilizers and biopesticides in Agricultural biotechnology CO6. Students will get expose to regulatory authorities and ethics in GMO and products			
Course Contents			
Unit I In	troduction of Agri	Biotechnology	(6 Hrs)
Scope of Biotechnology in agriculture, Def	inition of GMO Transge	nic crops, Scope and	global scenario of

GE crops, current status of transgenic crops and public concern and acceptance of transgenic crops-Global and Indian status.

Mapping of Course Outcomes for Unit ICO1: Students will understand global and Indian scenario of GMO				
Unit II	Plant Genetic Engineering	(6 Hrs)		
Techniques of plant transformation-Direct gene transfer methods and Agrobacterium mediated gene transfer. Vectors Selectable markers, reporter genes promoter and terminators gene construct for tissue specific expression. Strategies for genetic manipulation of herbicide tolerance, insect-pest resistance, abiotic stress resistance, improvement of crop yield and quality, case studies-BT Cotton, BT Brinjal, Golden R				
Mapping of Course Outcomes for Unit II	CO2: Students will understand advanced technologies use improvement	ed for crop		
Unit III	Plant Tissue Culture	(6 Hrs)		
Concept of cellular totipotency, cultur culture, Embryo culture and embry somatic hybridization and cybridiza metabolite production. In vitro mutage	e types callus, Cell suspension, protoplasts, root cultures, s o rescue, Clonal propagation, somaclonal and gametoc ation. Application of tissue culture in crop improvem enesis, cryopreservation and plant tissue culture repository.	hoot tip, Anther lonal variations ent. Secondary		
Mapping of Course Outcomes for Unit III	CO3: Students will gain knowledge of Plant Tissue Cultu	ire		
Unit IV	Advanced technology for crop improvement.	(6 Hrs)		
DNA molecular markers: Principles, amplified fragment length polymorph Simple sequence repeats (SSR), Sin selection. Structural and functional g genomics and applications, Metabolic	type and applications; restriction fragment length polymonism (AFLP), randomly amplified polymorphic DNA sequagle nucleotide polymorphism (SNP), QTL, Molecular senomics, gene mapping, genome mapping, gene tagging a engineering.	rphism (RFLP), iences (RAPD), marker assisted ind comparative		
	0.9			
Mapping of Course Outcomes for Unit IV	CO4: Students will get to know advanced technology for improvement.	crop		
Unit V	Biofertilizers, Biopesticides and Biostimulants	(6 Hrs)		
Microbe based biofertilizers/ biopesticides, Cyanobacterial biofertilizers. Azolla and Anabena symbiotic association. Bacteria (Rhizobium) biofertilizers, Fungal (Mycorhiza) bio-fertilizers. Nitrogen fixation-asymbiotic and symbiotic, nodule formation. Genetics and biochemistry of nitrogen fixation. Nif genes. Transfer of nif genes. Isolation of agriculturally important bioproducts, PGR, Biostimulants, Antioxidants etc				
Mapping of Course Outcomes for Unit VCO5: Student learn importance Agricultural biotechnologyof biofertilizers and biopesticides in Agricultural biotechnology				
Unit VI	Regulation of GM crops and Products	(6 Hrs)		
Ethical issues in biotechnology, Biosafety Committees, Risk assessment of GMOs, Public perception. PR and Trade related aspects, RCGM, GEAC, Cartagena Protocol, GMO Act 2004, UPOV Act 1978, UPOV Act 1991, PPVFR Act 2001 and patents.				
Mapping of Course Outcomes for Unit VI	CO6: Students will get expose to regulatory authorities an GMO and products	d ethics in		

Text Books:

Biotechnology Expanding Horizons B. D. Singh Kalyani Publishers ISBN 10: 9327222989 ISBN 13: 9789327222982

Plant Biotechnology: The Genetic Manipulation of Plants Adrian Slater, Nigle W. Scott and Mark R Fowler Oxford University Press ISBN-13 : 978-0199560875

Reference Books:

1. J.H. Hammond, P. Mcgarvey, and V. Yusibov (eds), Plant Biotechnology, Springer Verlag, Heidelberg. 2000

2. Principles of Gene Manipulation S. B. Primorose, RM Twyman and R.W. old sixth edition (2001) Blackwell science.

3. S.S. Purohit: Agricultural Biotechnology (2003) Agribio in India. Y.P.S. Bajaj: Biotechnology in Agriculture and forestry, Vol. 22 Springer Verlas.

4. Biotechnology in Agriculture, Mac Millon India Ltd., 1992, Edn. M.S.Swaminath.

5. Objective Biotechnology, B.K Prasad, B.D Singh, Sanjeev Kumar, Kalyani Publications 978-81-272-6967-1

MOOC / NPTEL Courses link / Any other e- resources link:

Plant Biotechnology by Dr. Rakhi chaturvedi Indian Institute of Technology Guwahati Guwahati - 781039, Assam, India <u>https://nptel.ac.in/courses/102/103/102103016/</u>

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course) 315466 : Analytical Techniques Lab					
Teaching Scl	heme:	Credit	Examination Scheme:		
Teaching Scheme	: PR: 04 hrs/week	02 Examination Scheme: PR: 50 Marks Total : 50 Marks			
Prerequisites:-			\sim		
Basic knowledge of	of Analytical Techniq	ues	G		
Course Objective	s:		Col		
1. To bring Hand	ds-On Learning of ana	alytical methods use	d in biotechnology		
2. To demonstrat	e the analytical technic	ques used in laborato	ry.		
3. To achieve tec	chnical laboratory ski	lls of qualitative & c	uantitative analysis of biological samples.		
Course Outcomes	x•		N N		
On completion of	,, this course students v	vill be able to	5°		
CO1 Analyze biol	logical samples for es	timation of macrom	plecules and sub cellular fractions		
CO2 Demonstrate	qualitative and quan	titative estimation of	biological samples		
CO3 Hands-on-le	arning for laboratory	skills in biotechnolo	ov		
	Suggested List	of Laboratory	esignments (Any 8)		
Sr No	Suggested List of Laboratory Assignments (Any 8)				
	Conception of Linid	G by Thin Lover Chr	roup A		
	Separation of Lipids by Thin Layer Unromatography				
2	To study gel filtration chromatography				
3	Determination of V	oid volume of Gel F	iltration Chromatography system		
Sr. No.	Group B				
1	Determination of protein concentration in fermentation broth				
2	Verification of Beer Lambert's law				
3	Determination of λ max for proteins				
4	Determination of the Molar Absorptivity of a Light Absorbing Molecule				
Sr. No.	Group C				
1	pH effects on absorption spectra: pKa determination by spectrophotometric method				
2	Clarification Technique: Jar Test				
3	Study of Batch Filtr	ation and determina	tion of specific cake resistance (α)		

Lab Assessment will be based on the following points

- 1. Present/Absent
- 2. A completion date of the journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Students shall keep their belongings on storage rack
- 3. Loose hair and flowing parts of apparel shall be properly tied before commencing of work
- 4. Enter the usage of chemicals and equipment's in a logbook
- 5. The instruction manual should be read before operating any instrument
- 6. Students should make aware of hazard warning symbols on reagent bottle
- 7. Protective devices must be worn when it is necessary to protect the eyes and face from splashes
- 8. All chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 9. Reagents to be stored should be labeled with due discarding date
- 10.Instructions for proper disposal of waste material should be followed
- 11. Report accidental cuts or burns to the instructor immediately.
- 12. Perform the experiment. Collect data in a clear and organized fashion. Be sure to note the units For each measurement. Also, be sure to participate in the experiment rather than just recording data for your group

General Guidelines:

Before starting any experiment, clearly define the goals. What question are you answering or what principle are you trying to demonstrate? What data is needed to solve the problem?

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course) 315467: Genetic Engineering Lab				
Teach	ing Scheme: Credit Examination Scheme:			
Teaching Scheme:	Scheme: PR: 4 hrs/week 2 Examination Scheme: OR : 50 Total : 50			
Prerequisites	:-	· · · · · · · · · · · · · · · · · · ·	G	
Knowledge of	f Genetics and Molecu	lar Biology		
Course Object	ives:			
1. To give Introd	luction to various tech	niques used in Genetic	Engineering.	
2. Give an overv	view of recombinant D	NA technology		
2 Dring Undered	tonding the underlying	mologular tools used		
5. Dring Undersi	tanding the underlying	molecular tools used	0	
4. Impart Manag	gement of information	generated in the experi	ments by applications of the techniques	
Course Outcomes:				
CO1. Understand the theoretical aspects of techniques used in molecular biotechnology.				
CO2. Will orient students to use of these techniques with respect to the research work.				
CO3. The techniques will give 'Hands on' training to understand the concepts of molecular biology				
	Suggested List	of Laboratory Ass	ignmonts (Any 8)	
<u> </u>	Suggesteu List		A A A A A A A A A A A A A A A A A A A	
Sr. No.	Isolation of Plant a	Grou	ip A	
2	Isolation of Bacteri	al DNA		
	Isolation of Fungal DNA			
4	Isolation of Mammalian DNA			
Sr. No.	Group B			
	Isolation of Plasmic	Isolation of Plasmid DNA		
2	Isolation of RNA			
3	Competent Cell Pre	paration		
4	Transformation			
Sr. No.		Grou	ıp C	
1	RE digestion and ag	garose gel electrophore	sis	
2	PCR (Demo)			

Lab Assessment will be based on the following points

- 1. Present/Absent
- 2. A completion date of the journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Students shall keep their belongings on storage rack
- 3. Loose hair and flowing parts of apparel shall be properly tied before commencing of work
- 4. Enter the usage of chemicals and equipment's in a logbook
- 5. The instruction manual should be read before operating any instrument
- 6. Students should make aware of hazard warning symbols on reagent bottle
- 7. Protective devices must be worn when it is necessary to protect the eyes and face from splashes
- 8. All chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 9. Reagents to be stored should be labeled with due discarding date
- 10. Instructions for proper disposal of waste material should be followed
- 11. Report accidental cuts or burns to the instructor immediately.
- 12. Perform the experiment. Collect data in a clear and organized fashion. Be sure to note the units For each measurement. Also, be sure to participate in the experiment rather than just recording data for your group

General Guidelines:

Before starting any experiment, clearly define the goals. What question are you answering or what principle are you trying to demonstrate? What data is needed to solve the problem?

Savitribai Phule Pune University Third Year Of B.Tech. Biotechnology (2019 Course) 315468 : Elective I-A : EnzymeTechnology Lab						
Teaching	Scheme:	Credit	Examination Scheme:			
Teaching Schem	e: PR: 2 Hrs/week	PR: 2 Hrs/week 01 Examination Scheme: TW :25 Total : 25				
Prerequisites:- I	Biochemistry II					
 Course Objectives: To learn fundamental approaches for conduction of the experiment related to enzyme molecule To make students aware about extraction method of enzyme To understand functioning of enzyme molecule To understand kinetic parameters of enzyme Course Outcomes: On completion of this course, students will be able to CO1. Recognize the various approaches for extraction of enzyme CO2. Understand basics of enzyme						
	Suggested L	ist of Laboratory	y Assignments (Any 8)			
Sr. No.		Grou	p A			
	Suggested List of L	aboratory Assignm	ents (Any 8)			
1	Extraction of an ena	zyme				
2	Construction of star	ndard curve for produ	act of enzyme catalyzed reaction			
3	Construction of pro	tein standard curve				
4	4 To study effect of varying enzyme concentration on enzyme activity					
Sr. No.	Sr. No. Group B					
1	Determination of Km and Vmax of an enzyme					
2	Effect of temperature on an enzyme activity					
3	Effect of pH on an enzyme activity					
4	To check the effect	of inhibitor on an en	zyme activity			
Sr. No.		(Group C			
1	Identification of type of inhibition of an enzyme					
2	Determination of sp	Determination of specific activity of an enzyme				
3	Immobilization of e	enzyme by any one m	ethod			

Lab Assessment will be based on the following points

- 1. Present/Absent
- 2. A completion date of the journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Students shall keep their belongings on storage rack
- 3. Loose hair and flowing parts of apparel shall be properly tied before commencing of work
- 4. Enter the usage of chemicals and equipment's in a logbook
- 5. The instruction manual should be read before operating any instrument
- 6. Students should make aware of hazard warning symbols on reagent bottle
- 7. Protective devices must be worn when it is necessary to protect the eyes and face from splashes
- 8. All chemicals, glassware, reagents and plastic wares should be kept in their appropriate place after use.
- 9. Reagents to be stored should be labeled with due discarding date.
- 10. Instructions for proper disposal of waste material should be followed.
- 11. Report accidental cuts or burns to the instructor immediately.

12.Perform the experiment. Collect data in a clear and organized fashion. Be sure to note the units For each measurement. Also, be sure to participate in the experiment rather than just recording data for your group

General Guidelines:

Before starting any experiment, clearly define the goals. What question are you answering or what principle are you trying to demonstrate? What data is needed to solve the problem?

31	Savitrib Third Year of 5468: Elective I-B : Good Lab Pr	ai Phule Pune University B.Tech. Biotechnology (<mark>actices and Good Manuf</mark>	2019 Course) Cacturing Practices Lab	
	Teaching Scheme:	Credit	Examination Scheme:	
Teachin	ng Scheme: PR: 2 Hrs/week	1	Examination Scheme: TW: 25 Total:25	
Pr	erequisites:-			
Co	ourse Objectives:			
1. To	know the objective of GMP and G	LP and the various bodies	overseeing it.	
2. To Qu	impart the importance of Qualit ality in the Lab	y and Understand the pr	inciples and implementations of	
5. 10	orient students towards various GN	AP in pharma and 1000 inc	lustry.	
Cours	se Outcomes: On completion of the	e course, learner will be at	ble to –	
CO1: L	earn and adopt quickly in a GMP e	nvironment.		
CO2: U	Inderstand the principles and imple	mentations of Quality		
CO3: w	vill be able to implement GMP in pl	narma and food industry		
CO4· 11	nderstand the importance of biosafe	ety and other hazards		
	Suggested List of	Laboratory Assignm	nents (Anv 8)	
Sr	Group A		ients (my o)	
No.				
1	Calibration and optimization of V	Weighing Balance		
2	Use of Spectrophotometer for qu	ality check of biological r	naterials.	
3	Calibration of the pH Meter, Mic	cropipettes		
4	Validation of the autoclave patte	rns		
Sr. No.	Group B			
1	Microbial load in clean room /lan	minar flow		
2	Testing the cooling efficiency of	the freezers		
3	Effect of Fumigation on microbial load in laboratory.			
4	4 Quality testing of water for injection (WFI)			
Sr. No.	Group C			
1	Writing and implementing SOP	for an experiment.		
2	Writing a target product profile (Guideline	TFF) for a drug using any	one of pharmacopeia (or WHO)	
3	Clean room Design/Basis of desi cell culture or microbial culture.	gn (BOD) for sterile area	used for aseptic handling like	
4	Visit to GLP/GMP facility.			

Lab Assessment will be based on the following points

- 1. Present/Absent
- 2. A completion date of the journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Students shall keep their belongings on storage rack
- 3. Loose hair and flowing parts of apparel shall be properly tied before commencing of work
- 4. Enter the usage of chemicals and equipment's in a logbook
- 5. The instruction manual should be read before operating any instrument
- 6. Students should make aware of hazard warning symbols on reagent bottle
- 7. Protective devices must be worn when it is necessary to protect the eyes and face from splashes
- 8. All chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 9. Reagents to be stored should be labeled with due discarding date.
- 10.Instructions for proper disposal of waste material should be followed
- 11. Report accidental cuts or burns to the instructor immediately.
- 12.Perform the experiment. Collect data in a clear and organized fashion. Be sure to note the units for each measurement. Also, be sure to participate in the experiment rather than just recording data for your group

General Guidelines:

Before starting any experiment, clearly define the goals. What question are you answering or what principle are you trying to demonstrate? What data is needed to solve the problem?

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course)					
	515468: Elective 1-C: Agricultural Biotechnology Lab				
Teaching Sc.	heme:	Credit	Examination Scheme:		
Teaching Scheme	e: PR: 2 Hrs/week	1	TW : 25 Total : 25		
Prerequisite	ès:-				
Knowledge	of Genetics and Molec	ular Biology			
Course Obj	ectives:				
1. To give Intro	duction to various tec	hniques used in Plant Genetic	Engineering.		
2 Give an over	view of recombinant	DNA technology			
2. Give un over	standing the underlying	a molecular tools used	0		
J. Dring Under			\sim		
4. Bring labora	tory training in Plant	Issue Culture Techniques	V		
Course Out	comes:				
CO1. Understand	the practical aspects	of techniques used in agricult	ural biotechnology.		
CO2. Will orient	students to use these t	echniques with respect to the	research work.		
CO3. The technic	ues will give 'Hands	on' training to understand the	concepts of molecular biology better		
CO4: Exposure to	o commercial lab facil	ities and techniques	1		
Suggested List of Laboratory Assignments (Any 8)					
Sr. No.	Group A	5			
1	Isolation of plant I	NA			
2	RE digestion of Pla	ant DNA			
3	Leaf disc method/				
4	RAPD or RFLP: P	CR			
5	RAPD/RFLP: agar	ose gel and scoring bands			
Sr. No. 👞	Group B				
1	Preparation of med	ia for PTC			
2	Induction of callus				
3	Suspension culture				
4	4 Somatic embryogenesis				
Sr. No. Group C					
1	Biofertilizers Produ	uction			
2	Isolation of N2 fixe	ers			
3	Biopesticides prepa	aration			
4	Isolation of agricul	turally important microorgani	isms		
Sr No.	Sr No. Group D				
1	Visit to PTC facilit	у			
2	Report for case stu	dies			

Text books	1. Keshavachandran.R and K V Peter. 2008 .Plant Biotechnology: Tissue culture and		
	Genetransfer. Orient and Longman, (Universal Press) Chennai.		
	2. Gresshoff, Peter M. (Ed). Plant biotechnology and development. 1992.		
	3. Jones, MGK & Lindsey, K. "Plant Biotechnology" in Molecular biology and		
	biotechnology, Walker, JM & Gingold, EB (Eds). 2000.		
	4.Kumar H D, Agricultural Biotechnology, India ,2005		
Reference	1. Esau's Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body: Their		
books:	Structure, Function, and Development, 3rd Edition, John Wiley & Sons, 2006.		
	2. R.H.Smith, Plant Tissue Culture: Techniques and Experiments, Academic Press, San		
	Diego. 1992.		
	3. M. J. Chrispeels and D.F. Sadava (eds), Plants, Genes and Crop Biotechnology, 2nd		
	Edition, Jones and Barlett Press, 2003		

Lab Assessment will be based on the following points

- 1. Present/Absent
- 2. A completion date of the journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Students shall keep their belongings on storage rack
- 3. Loose hair and flowing parts of apparel shall be properly tied before commencing of work
- 4. Enter the usage of chemicals and equipment's in a logbook
- 5. The instruction manual should be read before operating any instrument
- 6. Students should make aware of hazard warning symbols on reagent bottle
- 7. Protective devices must be worn when it is necessary to protect the eyes and face from splashes.
- 8. All chemicals, glassware, reagents and plastic wares should be kept in their appropriate place after use.
- 9. Reagents to be stored should be labeled with due discarding date
- 10. Instructions for proper disposal of waste material should be followed
- 11.Report accidental cuts or burns to the instructor immediately.
- 12.Perform the experiment. Collect data in a clear and organized fashion. Be sure to note the units For each measurement. Also, be sure to participate in the experiment rather than just recording data for your group

General Guidelines:

Before starting any experiment, clearly define the goals. What question are you answering or what principle are you trying to demonstrate? What data is needed to solve the problem?

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course) 315469 :Seminar					
Teaching Scheme:	Credit	Examination Scheme:			
Tutorial:1 Hrs/week	01	Examination Scheme: TW: 50 Marks Total : 50 Marks			
Prerequisites:-		0			
Basic knowledge of communication		S.			
Course Objectives: 1.To explore the basic principles of	of communication (verbal and	non-verbal) and active, empathetic listening,			
speaking and writing techniques					
2. To explore the latest technologi	es				
3.To enhance the communication	skills	5 .0.1			
4.To develop problem analysis ski	lls				
Course Outcomes: On completion of the course, learn	ners will be able to				
CO1: Analyze a latest topic of professional interest					
CO2: Enhance technical writing skills					
CO3: Identify an engineering problem, analyze it and propose a work plan to solve it					
CO4:Communicate with professional technical presentation skills					
Guidelines					
• Each student will select a topic in the area of Biotechnology Engineering and preferably keeping track with					
recent technological trends and development beyond scope of syllabus avoiding repetition in consecutive					
years.					
• The topic must be selected in con	• The topic must be selected in consultation with the department guide.				
• Each student will make a seminar presentation using audio/visual aids for a duration of 20-25 minutes and					
submit the seminar report.					
Active participation at classmate seminars is essential.					
• Department coordinator has circulated the format for report and it is recommended to use it.					
Guidelines for Assessment Panel of staff members along with a guide would be assessing the seminar work based on these parameters-Topic, Contents and Presentation, regularity, Punctuality and Timely Completion, Question and Answers, Report, Paper presentation/Publication, Attendance and Active Participation.					

Savitribai Phule Pune University Third Yearof B.Tech. Biotechnology (2019 Course) 315470 :Audit Course 5

In addition to credits courses, it is recommended that there should be audit course (non-credit course). Audit course is for the purpose of self-enrichment and academic exploration. Audit course carry no academic credit. Selection of audit courses helps the learner to explore the subject of interest in greater details resulting in achieving objective of audit course's inclusion. Evaluation of audit course will be done at institute level. Method of conduction and method of assessment for audit courses is suggested.

Criteria:

The student registered for audit course shall be awarded the grade AP(Audit course pass) and shall be included such grade in the semester grade report for that course, provided students has the minimum attendance as prescribed by the Savitribai Phule Pune university and satisfactory in-semester performance and secured a passing grade in that audit course. No grade point is associated with this "AP" grade and performance in these courses is not accounted in the calculation of the performance indices SGPA and CGPA.

Guidelines for Conduction and Assessment (Any one or more of following but not limited to)

- 1. Lecture/Guest lecture
- 2. Visit (Social/field) and reports
- 3. Demonstrations
- 4. Surveys
- 5. Mini project
- 6. Hands on experience on specific focused topic.
- 7. Seminar/Workshop

Guidelines for Assessment (Any one or more of following but not limited to)

- 1. Written test
- 2. Quiz
- 3. Demonstrations/practical test
- 4. Presentations/Poster
- 5. IPR/publication

6. Report

Audit course 2 Options (Anyone)

- **315470 : A:** Lifestyle and Nutrition
- 315470 :B: Essence of Indian Traditional Knowledge

Semester – VI

•

.

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course) 315471: Fermentation Technology					
Teaching Scheme:	Credit Examination Scheme:				
Theory: 3 Hrs/ week	03 In-Sem (Theory): 30 Marks End Sem (Theory): 70 Marks Total Marks:-100				
Prerequisite Courses, if any:		50			
Microbiology and Biochemistry					
Companion Course, if any: B	ioseparation Engineer	ing			
Course Objectives:					
1. To introduce the history, industrial and domestic level	fundamental concepts	and significance of microbial fermentation at			
2. To train the students in con media at industrial level	cepts of media prepara	ation, nutritional requirements and sterilization of			
3. To introduce different types students	of microbial fermenta	tion processes, both classical and advanced to the			
4. To introduce students with the different methods and engineering aspects of fermentation processes					
5. To introduce the mathematical concepts of scale up and its significance in techno commercial feasibility at industrial level					
Course Outcomes: On completi	on of the course, learne	er will be able to –			
CO1: Understand different types of microbial fermentations and the microorganisms used for the same					
CO2: Learn different media types used at industrial level and their sterilization methods					
CO3: Learn fundamentals of different types of fermentation processes					
CO4: Learn different types of fermenters and their operation					
CO5: Understand different types of microbial bio-processes like antibiotic, vitamin and enzyme Production.					
CO6: Understand fundamentals of and carry out elementary calculations regarding scale up.					

	Course Contents	
Unit I		(7Hrs)
Introduction to Microbia of industrially importan processing - Screening a preparation	al Fermentation, microbial / Industrial fermentation: Appl at products, Examples of classical fermentation systems and isolation of microbes, Preserving industrially importa	lications for production , Concept of upstream ant microbes, Inoculum

1 1						
Mapping of Course	CO1: Understand different types of microbial fermentations	and the				
Outcomes for Unit I	microorganisms used for the same					
Unit II		(7 Hrs)				
Media Preparation and etc., effect of media co Sterilization: Need for destruction, <i>in situ</i> steri	optimization, Different types of media, sources of nutrients omponents on fermentation, media preparation, optimization sterilization, different types of sterilization techniques – lization, HTST	i.e. carbon, nitrogen for maximum yield, their mechanism of				
Mapping of Course Outcomes for Unit II	CO2: Learn different media types used at industrial level and sterilization methods	their				
Unit III		(7Hrs)				
Microbial production of Citric acid etc. Produ Production of biomass	of industrially important products: Production of primary meta action of secondary metabolite like Antibiotics (Penicillin like baker's Yeast, Microbial production of vitamins B2, B12.	tabolites like ethanol, a, Streptomycin etc.)				
Mapping of Course Outcomes for Unit III	CO3: Learn fundamentals of different types of ferme processes	entation				
Unit IV		(8 Hrs)				
Isolation, Production a and their applications, Production, Fungal, alg	nd use of microbial enzymes, Methods of Immobilization, i Case studies of Fructose, Glucose production using enzymer al Protein Production, Microbial Transformations.	mmobilized enzymes s. Single Cell protein				
Mapping of Course Outcomes for Unit IV	CO4: Learn different types of fermenters and their operation					
Unit V		(8Hrs)				
Introduction to Bioreac tubular flow reactor, flu of Bioreactor. Submerg disadvantages, applicat	ctor design: Stirred tank reactor (CSTR), Mixed flow reactor idized bed reactor etc. Mode of operations: Batch, fed-batch, ged Liquid Fermentation (SLF) and Solid state fermentation (ions of SLF and SSF.	or, Plug flow reactor, Continuous operation SSF), advantages and				

Mapping of Course Outcomes for Unit V	CO5: Understand different types of microbial bio-processes land enzyme Production.	ike antibiotic, vitamin
Unit VI		(8Hrs)
Scale-up: Principles, th operation parameters C product recovery, product Introduction to GMPs	eoretical considerations and techniques used, Sterilization, ino oncept of downstream processing, Fermentation and product r act purity, fermentation efficiency, case example such as ethan	culum development, ecovery costs, yields, ol economics;

Mapping of Course Outcomes for Unit	CO6: Understand fundamentals of and carry out elementary calculations regarding scale up.
VI	
	Learning Resources

Text Books:

Casida, "Industrial microbiology", Newage Publication, 2001

Stanbury, Whitaker, S.Hall. "Principles of Fermentation Technology", Second Edition, Elsevier publication Bailey and Ollis, "Biochemical Engineering Fundamentals", McGraw Hill, NewYork

Reference Books:

- 1. Trevor Horwood, "Enzymes", 2001
- 2. Prescott and Dunn, "Industrial microbiology", CBS publications 4thEdition, 1999
- 3. M.Y. Young, "Comprehensive Biotechnology Vol. 1-4:, Pergamon Press
- 4. T.D. Brock, "Biotechnology: A Text Book of Industrial Microbiology", SmaeurAssociates, 1990
- 5. Paulin M. Doran, "Bioprocess Engineering Principles", Academic Press, London
- 6. S. Aiba, A. E. Humphrey, N. F. Milli, "Biochemical Engineering"

MOOC / NPTEL Courses link / Any other e- resources link: For example

1. NPTEL Course "Industrial Biotechnology"

https://nptel.ac.in/courses/102/105/102105058/

Savitribai Phule Pune University Third Year of B. Tech. Biotechnology(2019Course) 315472 : Mass Transfer						
Teaching Scheme:	Credit	Examination Scher	ne:			
Cheory: 03 Hrs/week03In-Sem (Theory): 30 Marks End Sem (Theory): 70 Marks Total Marks :-100						
Prerequisite Courses, if any	:	1	<u> </u>			
• Basic knowledge of subjects operations.	like Material Balances	s and stoichiometry, heat trans	sfer and fluid flow unit			
• Problem Solving ability with	concept understanding	and applications	5			
Companion Course, if any:		0				
Course Objectives:						
1. To introduce basic concepts of	of mass transfer, mass t	ransfer operations and its appli	ications.			
2. To give emphasis on the impo	ortance of mass transfer	r knowledge while working in	bioprocess industries.			
3. To study comprehensively crystallization in detail.	mass transfer oper	rations like distillation, ab	sorption, drying and			
4. To make students aware of designing methods and calculations for efficient mass transfer equipment.						
5. To make students apply the co	oncepts of mass transfe	er to biological systems and op	erations.			
Course Outcomes: On complete	ion of the course, learne	er will be able to –				
CO1: Understand and apply mas	ss transfer principles.					
CO2: Write mass balance equation	ons for <mark>different unit</mark> oj	perations.				
CO3: Understand and develop p	rocesses based on vario	ous mass transfer principles an	d operations.			
CO4: Apply basic knowledge, ic	lentify and design mass	s transfer equipments (Tray tow	wers, dryers etc.)			
for separation of products.	+					
	Course C	ontents				
Unit I	Introduction t	o Mass transfer	(7 Hrs)			
Introduction, General principles separation method, Methods of c transfer, Types of diffusion - M Maxwell law of diffusion, Molec of solid diffusion, Introduction to overall mass transfer coefficients.	of Mass Transfer, Cla conducting mass transf Molecular diffusion, T cular Diffusion in gases o Inter phase mass tran , Use of local overall, c	assification of Mass Transfer er operations, Design principl urbulent diffusion, Diffusion and liquids, Diffusivities of g asfer, Equilibrium, Two resist coefficients, Stages, Cascades	Operations, Choice of es Diffusion and Mass in Solids, Fick's and gases and liquids, types ance theory, Local and			

drying, Mechanism of moistur Classification of drying equipment Numericals	e movement in solid continuous drying, Time re ents, Qualitative aspects of freeze drying, Case studi	quired for drying es with
Mapping of Course Outcomes for Unit II	CO2: mass balance equations for different unit op CO3: Understand and develop processes based on transfer principles and operations.	erations. various mass
Unit III	Crystallization:	(6 Hrs)
Calculations of yield, Enthalpy Mapping of Course Outcomes for Unit III	balances, Crystallizers used for bioproducts CO2: Write mass balance equations. CO3: Understand and develop processes based transfer principles and operations.	on various mass
Unit IV	Distillation	((IIma)
		(0 Hrs)
Distillation: Definition, Vapor- Ideal solutions-Raoult's law, Az distillation-Continuous rectifica Batch rectification, Molecular d	liquid equilibria for Ideal and Non-ideal systems, Re ecotropes, Positive and negative deviations from Idea tion, Differential, Flash, Extractive, Low pressure, S istillation	(0 HFS) elative volatility, ality, Methods of team distillation,
Distillation: Definition, Vapor- Ideal solutions-Raoult's law, Az distillation-Continuous rectifica Batch rectification, Molecular d	liquid equilibria for Ideal and Non-ideal systems, Re ecotropes, Positive and negative deviations from Idea tion, Differential, Flash, Extractive, Low pressure, S istillation CO1: Understand and apply mass transfer principl	(o Hrs) elative volatility, ality, Methods of team distillation, es.
Distillation: Definition, Vapor- Ideal solutions-Raoult's law, Az distillation-Continuous rectifica Batch rectification, Molecular d Mapping of Course Outcomes for Unit IV	liquid equilibria for Ideal and Non-ideal systems, Receotropes, Positive and negative deviations from Ideation, Differential, Flash, Extractive, Low pressure, Sistillation CO1: Understand and apply mass transfer principle CO2: Utilize and design mass transfer equipmedity dryers etc.) for separation of products.	(o Hrs) elative volatility, ality, Methods of team distillation, es. ents (Tray towers
Distillation: Definition, Vapor- Ideal solutions-Raoult's law, Az distillation-Continuous rectifica Batch rectification, Molecular d Mapping of Course Outcomes for Unit IV	 liquid equilibria for Ideal and Non-ideal systems, Receotropes, Positive and negative deviations from Ideation, Differential, Flash, Extractive, Low pressure, Sistillation CO1: Understand and apply mass transfer principle CO2: Utilize and design mass transfer equipmedryers etc.) for separation of products. 	(o Hrs) elative volatility, ality, Methods of team distillation, es. ents (Tray towers (6 Hrs)
Distillation: Definition, Vapor- Ideal solutions-Raoult's law, Az distillation-Continuous rectifica Batch rectification, Molecular d Mapping of Course Outcomes for Unit IV Unit V Tray tower calculations: Cont Thiele method, Tray efficiencie ratio, Types of reboilers, Types types of packings, NTU, HTU, J	liquid equilibria for Ideal and Non-ideal systems, Re- teotropes, Positive and negative deviations from Idea tion, Differential, Flash, Extractive, Low pressure, S istillation CO1: Understand and apply mass transfer principl CO2: Utilize and design mass transfer equipmed dryers etc.) for separation of products. Tray tower calculations inuous rectification for binary system, Multistage tr es, Reflux ratio-Total reflux, Minimum reflux ratio of condensers-Total condensers, partial. Condensers HETP concept	(o Hrs) elative volatility, ality, Methods of team distillation, es. ents (Tray towers (6 Hrs) ay towers-McCabo o, Optimum reflux s, Packed columns
Distillation: Definition, Vapor- Ideal solutions-Raoult's law, Az distillation-Continuous rectifica Batch rectification, Molecular d Mapping of Course Outcomes for Unit IV Unit V Tray tower calculations: Cont Thiele method, Tray efficiencies ratio, Types of reboilers, Types types of packings, NTU, HTU, I Mapping of Course	liquid equilibria for Ideal and Non-ideal systems, Re- ceotropes, Positive and negative deviations from Idea tion, Differential, Flash, Extractive, Low pressure, S istillation CO1: Understand and apply mass transfer principl CO2: Utilize and design mass transfer equipmed dryers etc.) for separation of products. Tray tower calculations inuous rectification for binary system, Multistage tr es, Reflux ratio-Total reflux, Minimum reflux ratio of condensers-Total condensers, partial. Condensers HETP concept CO3: Write mass balance equations for different u	(o Hrs) elative volatility, ality, Methods of team distillation, es. ents (Tray towers (6 Hrs) ay towers-McCabo o, Optimum reflux s, Packed columns

Unit VI	Gas Absorption	(6 Hrs)
Unit VI	Gas Absorption	(0 Hrs)

Gas Absorption: Mechanism of gas absorption, Equilibrium in gas absorption, Ideal liquid solutions, Non ideal liquid solutions, Choice of solvent for absorption, L/G ratios for absorbers, Absorption factor, Real trays and Tray efficiency, Use of Reflux, Counter-current operation, case studies

Mapping of Course	CO1: Understand and apply mass transfer principles.
Outcomes for Unit VI	CO2: Write mass balance equations for different unit operations.
	CO4: Apply basic knowledge, identify and design mass transfer equipments (Tray towers, dryers etc.) for separation of products.

Learning Resources

Text Books:

1. Robert Traybal, "Mass Transfer Operations" Third edition, Mc Graw Hill Publication, 2017

Reference Books:

Coulson J.M. and Richardson J.F., "Chemical Engineering", Vol I & II-McGraw Hill International

Alan Shivers Foust, Leonard A. Wenzel, L. Bryce Andersen, Louis Maus, Curtis W. Clump, "Principles of Unit Operations in Chemical Engineering", John Wiley & Sons, January 1st 1980

Buford D. Smith, "Design of Equilibrium Stage Processes", McGraw-Hill, New York, 17 June 2004

MOOC / NPTEL Courses link / Any other e- resources link:

NPTEL Course "Mass Transfer Operations I" https://onlinecourses.nptel.ac.in/noc20_ch15/preview

Virtual LAB Link:

- 1. <u>http://vmt-iitg.vlabs.ac.in/Forced_draft_tray_dryer(theory).html</u>
- 2. <u>http://vmt-iitg.vlabs.ac.in/Rotary_dryer(theory).html</u>
- 3. <u>http://vmt-iitg.vlabs.ac.in/Flow_through_porous_media_I(Expt_Calc).html</u>
- 4. http://vmt-iitg.vlabs.ac.in/Column_tray_efficiency(theory).html
- 5. http://vmt-iitg.vlabs.ac.in/ASTM_distillation(theory).html

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology (2019 Course)							
315473 : Bioseparation Engineering							
Teaching Scheme:	Credit	Examination Scheme:					
heory: 3Hrs / week 03 In-Sem (Theory): - 30Marks End Sem (Theory): 70Marks Total Marks :-100							
Prerequisite Courses, if any:							
Biochemistry, Fluid Flow and Unit Ope	rations, Analytical Tec	hniques					
Companion Course, if any:		S					
Course Objectives:		0					
1. To introduce students with bioseparation disruption; this is the first step in produce	n techniques. To demo et isolation.	nstrate students with techniques of cell					
2. Introduce unit operations and their appli	cation in separation of	bioproducts.					
3. To demonstrate techniques for solid liqu	3. To demonstrate techniques for solid liquid extraction						
4. To make student understand solvent extraction methods and Aqueous Two Phase extraction							
5. To learn membrane separation techni packaging Introduce students with Adso	5. To learn membrane separation techniques, types of membranes and Technology of membrane packaging Introduce students with Adsorption Techniques.						
Course Outcomes: On completion of the course, learner will be able to –							
CO1: Learn the basic Bioseparation techniques along with types of cell disruption methods important for intracellular product.							
CO2: Understand the basic unit operation a	nd their applications fo	or Biomolecules separation					
CO3: Train students with solid-liquid sepa filtration, centrifugation etc.	CO3: Train students with solid-liquid separation methods (Leaching) other than unit operations like filtration, centrifugation etc.						
CO4: Understand the use of liquid -liquid separation techniques for biomolecules							
CO5: Students will learn advances separation and purification technique like Membrane Technology CO6: Learn concept of Adsorption and its application on downstream processing							
Course Contents							
Unit I In	ntroduction to Bio	separations (7 Hrs)					
An overview of Bioseparations, Salient features, Advantages, Disadvantages, Need of Bioseparations, Range of Bio products, high volume, low value products and low volume, high value products, Process design criteria and economics of Bioseparations, Mechanical and enzymatic methods of cell disruption, importance of cell disruption in product release							

Monning of Courses		
mapping of Course	CO1: Learn the basic Bioseparation techniques along wit	h types of cell
Outcomes for Unit I	disruption methods important for intracellular product	
Unit II	Extraction Operations	(7Hrs)
SLE (Leaching): Definiti of operation, Single stage	on, Preparation of the solid, Factors affecting leaching ope leaching, Continuous counter current leaching	erations, Methods
LLE(Solvent extraction) triangular coordinates, Mi Multistage crosscurrent, co	Definition, Fields of usefulness, Ternary liquid equil axture rule, Choice of solvent, Material balances - Single countercurrent and co current extraction	ibria, Equilatera stage extraction
Mapping of Course	CO2: Train students with solid-liquid and liquid-liquid se	paration methods
Outcomes for Unit II	for biomolecules	
Unit III	Adsorption	(7 Hrs)
Definition, Types of Adsor- - Langmuir, Freundlich, B and Temperature Swing A Mapping of Course Outcomes for Unit III	rption - Physical and Chemical, Nature of adsorbents, Ads ET, Heat of adsorption, Introduction to Pressure Swing A dsorption (TSA), Biotechnological Applications of Adsorp CO3: Learn concept of Adsorption and its application processing of Biomolecules	orption Isotherms doorption (PSA) ption processes n in downstream
Unit IV	Chromatography Techniques	(8Hrs)
Gas Chromatography (G Pumps, degasser, mixer, Chromatograms, Introduct	C), High Performance Liquid chromatography (HPLC), guard column, column and detectors, study and u ion to GC-MS and LC-MS, case studies of GC-MS, LC-M	Instrumentation understanding of S.
Mapping of Course Outcomes for Unit IV	CO4: Students will understand functioning of various part chromatography system. They will learn to study chromato resolve problems related to it.	s of ograms and
Unit V	Membrane Separation Techniques	(8Hrs)
Classification of separation processes, Types of mem separation techniques, Inde ,Reverse Osmosis, Piezon mediated transport- liquid fouling Membrane and the	on techniques, Definition of a membrane, Criteria of mem branes, Advantages of membrane separation processes of ustrial Applications, Membrane separations - Micro filtrati dialysis, Electro dialysis, Membrane electrolysis, Perva membranes, Membrane contactors, Polarization Phenome es and Industrial applications of all Processes	hbrane separation over conventional on, Ultrafiltration poration ,Carrien henon, Membrane
rouning, memorane modul		
Mapping of Course Outcomes for Unit V	CO5: Students will learn and understand different methors separation	ods of membrane

Mapping of CourseCO6: Students will understand principles of vast variety of separation techniquesOutcomes for Unit VIand their use in separation of biotechnological products

Learning Resources

Text Books:

- B.Shivshankar, "Bioseparations: Priniples and Techniques", Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- 2. Treybal R.E., "Mass Transfer Operations", Third Edition, McGraw Hill International Editions, 1980
- Coulson J.M. and |Richardson J.F., "Chemical Engineering", Vol I & II –McGraw Hill International Editions, 1980
- 4. Pauline Doran, "Bioprocess Engineering Principles", Elsevier Publications, New Delhi, 2010
- Michael R. Ladisch, "Biosepration Engineering, Principles, practice and economics", Wiley-Blackwell Publishers ,9 April 2001

Reference Books:

1. Alan Shivers Foust, Leonard A. Wenzel, L. Bryce Andersen, Louis Maus, Curtis W. Clump, "Principles of Unit Operations in Chemical Engineering", John Wiley & Sons, January 1st 1980

2. Warren McCabe, Julian Smith, Peter Harriott, "Unit Operations of Chemical Engineering", McCabe W.L. and Smith J.C. , 7th Edition, McGraw Hill Chemical Engineering Series, 0ctober 27, 2004

 Buford D. Smith, "Design of Equilibrium Stage Processes", McGraw-Hill, New York, 17 June 2004
 P. A. Belter, E.L. Cussler and W.S. Hu, "A review of Bioseparations (Downstream Processing for Biotechnology)", Wiley Interscience Publishers, New York, 1988.

MOOC / NPTEL Courses link / Any other e- resources link:

1.NPTEL Course on "Downstream Processing"

https://nptel.ac.in/courses/102/106/102106022/

2. NPTEL Course on "**Principles of Downstream Techniques in Bioprocess**" <u>https://nptel.ac.in/courses/102/106/102106048/</u>

Virtual LAB Link:

1. Separation of Casein from Milk

http://biotech01.vlabs.ac.in/bio-chemistry/Isoelectric_Precipitation_of_Proteins_Casein_from_Milk/

2. Determination of Molecular Weight of Intact Proteins using MALDI-TOF MS

http://pe-iitb.vlabs.ac.in/exp11/index.html

Savitribai Phule Pune University						
Third Year of B.Tech. Biotechnology (2019 Course)						
315474	l: Elective II-A: Ins	strumentation and Process Control				
Teaching Scheme:	Teaching Scheme: Credit Examination Scheme:					
Theory: 03 Hrs / week	03	In-Sem (Theory): 30 Marks End -Sem (Theory): 70 Marks Term Work: 50 Marks Total Marks: 150	S.			

Prerequisite Courses, if any:

Basic Knowledge of Chemical Engineering Subjects Like Mass Transfer, Material Balance Heat Transfer, Reaction Engineering etc. Problem Solving ability, Information manipulation and processing skills.

Companion Course, if any: --

Course Objectives:

- 1. To familiarize students with various aspects (principle of operation, construction, characteristics and applicability) of instruments necessary for measurement of different process parameters encountered in the industry
- 2. To introduce students to the fundamentals of process dynamics types of processes and different types of inputs as also to study the dynamic and response characteristics of first order systems in detail
- 3. To understand the dynamic and response characteristics of second order systems
- 4. To introduce the concept of process control and to provide knowledge of the different components and working of a control system
- 5. To impart knowledge pertaining to stability analysis of control systems
- 6. To bring students abreast with different advances in process control systems and demonstrate their applications to the bioprocess industry

Course Outcomes: On completion of the course, learner will be able to -

On completion of the course, learner will be able to :

CO1: Ability to select and operate the most common instruments encountered in the bioprocess Industry.

CO2: A clear understanding of the most important concepts of process dynamics and ability to predict the dynamic responses of various first order systems

CO3: Ability to predict the dynamic behavior of different second order systems

CO4: Ability to analyze a control system and select controllers based on the problem requirement

CO5: Ability to analyze stability and Frequency response of a given system.

CO6: Ability to understand working of multi loop process controls systems.

Course Contents

	Ur	nit I								(06 Hrs)
Need	for	measuremen	t of	different	process	parameters,	Instrumen	ts used	for	measurement:

Pressure – Mechanical and electric transducers, Low pressure – McLeod Gauge and Pirani Gauge, **Temperature** - bi- metal thermometers, resistance thermometer, thermistors, thermocouples, Radiation and optical pyrometers,

Flow – Hot Wire anemometer and magnetic flow meters.

Mapping of Course	Ability to select and operate the most common instruments	encountered in
Outcomes for Unit I	the bioprocess Industry.	

Unit II

(06 Hrs)

Dynamics of First Order Systems Introduction

Need for studying process dynamics and control, Laplace transforms and its application to process dynamics, characteristics of ideal forcing functions (step, ramp, pulse, impulse, frequency)

Linear open loop Systems – First Order Systems

Definition, characteristics and physical examples of first order systems such as thermometer, liquid tank, CSTR etc., model transfer function and significance of time constant, Dynamic behavior/Response of first order systems to different forcing functions, linearization of non-linear systems (for single variable systems only).

Mapping of Course Outcomes for Unit II	CO2: A clear understanding of the most important concepts of process dynamics and ability to predict the dynamic responses of various first order systems.
Unit III	(08 Hrs)

Unit III

Dynamics of Second Order Systems

Definition, characteristics and physical examples of second order systems such as manometer, interacting and non-interacting tank systems, model transfer function, Dynamic behavior of second order systems to different forcing functions, Response of Second order system – underdamped, critically damped and overdamped, Transportation lag.

Mapping of Course Outcomes for Unit III	CO3: Ability to predict the dynamic behavior of different second order systems		
Unit IV		(06 Hrs)	

Linear Closed Loop Systems

Control systems, components of a control system, Concept of feedback control, Controller and final controlling element, pneumatic control valve, control system hardware. Different types of control actions – P, PI, PD, PID; transfer functions, open and closed loop response, advantages and limitations of each controller, Block diagram of a control system, servo and regulatory operations, open and closed loop transfer function, overall transfer function, transfer function for change in load and set point, multi-loop control system transfer function.

Mapping of Course Outcomes	CO4: Ability to analyze a control system and select controllers based
for Unit IV	on the problem requirement

Unit V

Stability Analysis and Frequency Response Analysis

Concept of stability in control systems, stability criterion, Routh's test for stability, root locus analysis, root locus design and plots, frequency response analysis and stability criterion (Bode plots), controller tuning -Ziegler Nichols and Cohen-Coon methods.

Mapping of Course Outcomes for Unit V	CO5: Ability to analyze stability and Frequency response of a given system.
Unit VI	(08 Hrs)

(**U**8 Hrs)

(06 Hrs)

Advanced Control Systems and Industrial Applications

Introduction to advanced control systems: Cascade, feed forward, selective, ratio, override and split range control strategies; Application to fermentation industries: Speed control, Temperature control, Control of gas supply, Control of pH, Control of dissolved oxygen, Antifoam control.

Mapping of Course Outcomes	CO6: Ability to understand working of multi loop process controls
for Unit VI	systems.

Learning Resources

Text Books:

- 1. George Stephanopoulos., "Chemical Process control : An Introduction to Theory and Practice" Pearson Prentice Hall
- 2. Stanbury, P.F. and Whitaker, A., "Principles of Fermentation Technology", Butterworth- Heinemann

Reference Books:

- 1. Coughanowr, D., "Process System analysis and control" Mc-Graw Hill
- 2. A.K.Jairath., "Problems and Solutions of Control Systems", CBS

NPTEL Courses link.

- 1. NPTEL Course "Process Control and Instrumentation" https://nptel.ac.in/courses/103/103/103103037/
- 2. NPTEL Course "Process Control and Instrumentation" https://nptel.ac.in/courses/103/105/103105064/

Savitribai Phule Pune University Third Yearof B.Tech. Biotechnology (2019 Course)

315474: Elective II-B: Food Biotechnology

Teaching Scheme:	Credit	Examination Scheme:
Theory: 3Hrs / week	03	In-Sem (Theory): - 30 Marks End-Sem (Theory): -70 Marks
		Term Work: - 50
		Total Marks:- 150

Prerequisite Courses, if any:

Students should have prior knowledge of subjects microbiology, fermentation technology, basic biology, physics, and mathematics.

Companion Course, if any: --

Course Objectives:

- 1. To introduce students to the applications of biotechnology in the food industry with major focus on the causes, types and factors affecting food spoilage along with the effects of such on food .
- 2. To acquaint students with the different processing techniques generally applied in the food industry for treatment and preservation of food articles.
- 3. To develop an ability to apply underlying engineering principles for the design of most commonly Used equipment's in food processing .
- 4. To bring students abreast with different aspects of microbial fermentation and to study industrial processes for production of a number of technologically important food products.
- 5. To impart knowledge of classes of industrially important enzymes with specific applications in the food industry.
- 6. To emphasize the importance of treatment of wastes generated from the food industry and various methods of treating them.

Course Outcomes: On completion of the course, learner will be able to -

CO1: Ability to apply principles of biotechnology to food industry with a clear understanding of role of micro- organisms, the mechanisms and effects of food spoilage and methods to prevent the same

CO2: Ability to select the best possible processing and/ or preservation technique based on the characteristics of Food and the requirements along with an understanding of the intricacies associated therein

CO3:An ability to apply engineering principles to effectively design most commonly used processing equipment's in food industry

CO4:A clear understanding of the process and the salient characteristics of systems involving microorganisms and an ability to design new processes based on similar principles

CO5:An understanding of the role and important applications of enzymes in the food industry

CO6: Ability to characterize the wastes generated from the food industry and apply a suitable method of treating them

Course Contents							
Unit I	Int	troduction to Food Biotechnology and Spoilage of (7 Hrs) Food					
Biotechnology in relation to the food industry, Food Biotechnology- Scope and applications, classes of industrially important food, Characteristics of food - Nutritional value and sensory characteristics, spoilage of food –Mechanisms and types of spoilage, Intrinsic and extrinsic factors affecting spoilage: water activity, pH, temperature, redox potential etc., major spoilage microorganisms and their growth conditions, effect on food.							
Mapping of Course Outcomes for Unit I		CO1: Ability to apply principles of biotechnology to food induce clear understanding of role of micro-organisms, the mechanism of food spoilage and methods to prevent the same	ustry with a ms and effects				
Unit II		Introduction to Food Processing	(7 Hrs)				
Preliminary processi peeling etc Principle Freezing and freeze of treatment, dehydratic gamma rays, hydrost Mapping of Co Outcomes for Unit	ng met es and drying, on, dryi atic pre ourse II	hods – need and types, Raw material preparation: Cleaning, s methods of food preservation – Low temperature techniques High temperature techniques: Blanching, HTST pasteurization ng, extrusion cooking, Irradiation techniques: UV light, microw ssure cooking, use of additives, modified atmosphere packaging CO2: Ability to select the best possible processing and/ technique based on the characteristics of food and the requ	orting, grading, : Refrigeration, , canning, UHT vave processing, g and storage or preservation hirements along				
		with an understanding of the intricacies associated therein					
Unit III		Design of Food Preservation Equipments	(7 Hrs)				
General engineering freezer, dryer, therma temperature calculati	aspects al death on for l	and processing methods, types of equipments and their design: kinetics of micro-organisms, calculation of pasteurization time HTST sterilization	Refrigerator, , time and				
Mapping of Co Outcomes for Unit	ourse III	CO3: An ability to apply engineering principles to effective commonly used processing equipments in food industry	ly design most				
Unit IV	C	Microbial and Fermentation Biotechnology	(8 Hrs)				
Technologies used for microbial production of food ingredients, Biotechnology of microbial polysaccharides in food, Microbial biotechnology of food flavor production, microbial production of oils and fats, food applications of algae, Process developments in solid state fermentation for food applications, solid state bio- processing for functional food ingredients, Fermentation biotechnology of traditional foods of the Indian Subcontinent.							
Mapping of Co Outcomes for Unit 1	of Course r Unit IV CO4: A clear understanding of the process and the salient characteristics of systems involving micro-organisms and an ability to design new processes based on similar principles						
Unit V		Role of Enzymes in Food Processing	(8 Hrs)				
Classes of industrially important enzymes in food industry, Role of enzymes in bakery industry, cereal and beverage industry, meat processing, beer mashing and chill-proofing, production and application of pectinases, proteases etc.							
Mapping of C							

Unit VI	Processes for the treatment of food processing	(8 Hrs)
	waste	
Classification and character disposal methods- physical methods for liquid wastes food processing wastes.	rization of food industrial waste: solid, liquid and hazardous l, chemical and biological, Treatment methods of solid wa from food industry, activated sludge and anaerobic processes f	wastes, Waste stes, Treatment for treatment of

Mapping of Course	CO6: Ability to characterize the wastes generated from the food industry
Outcomes for Unit VI	and apply a suitable method of treating them.

Learning Resources

Text Books:

- 1. B.Shivshankar, "Bioseparations: Principles and Techniques", Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- 2. Treybal R.E., "Mass Transfer Operations", Third Edition, McGraw Hill International Editions, 1980
- 3. Coulson J.M. and |Richardson J.F., "Chemical Engineering", Vol I & II –McGraw Hill International Editions, 1980
- 4. Pauline Doran, "Bioprocess Engineering Principles", Elseveir Publications, New Delhi, 2010
- 5. Michael R. Ladisch, "Biosepration Engineering, Principles, practice and economics", Wiley-Blackwell Publishers ,9 April 2001

Reference Books:

- 1. Alan Shivers Foust, Leonard A. Wenzel, L. Bryce Andersen, Louis Maus, Curtis W. Clump, "Principles of Unit Operations in Chemical Engineering", John Wiley & Sons, January 1st 1980
- Warren McCabe, Julian Smith, Peter Harriott, "Unit Operations of Chemical Engineering", McCabe W.L. and Smith J.C., 7th Edition, McGraw Hill Chemical Engineering Series, 0ctober 27, 2004
- 3. Buford D. Smith, "Design of Equilibrium Stage Processes", McGraw-Hill, New York, 17 June 2004
- 4. P. A. Belter, E.L. Cussler and W.S. Hu, "A review of Bioseparations (Downstream Processing for Biotechnology)", Wiley Interscience Publishers, New York, 1988

MOOC / NPTEL Courses link / Any other e- resources link:

NPTEL Course on "Food Technology"

https://nptel.ac.in/courses/103/107/103107088/

NPTEL	Course	on	"Dairy	and	Food	Processes	and	products	technology"
https://nptel.	.ac.in/cours	ses/126	5/105/1261	05013/					

Savitribai Phule Pune University Third Year Of B.Tech. Biotechnology (2019 course)

315474: Elective II-C: Database Management Systems

Teaching Scheme:	Credit	Examination Scheme:	\sim
Theory: 4 Hrs/ week	3	In-Sem (Theory): 30 Marks End Sem (Theory): 70 Marks TW:- 50 Marks Total : 150 Marks	-0

Prerequisite Courses, if any:

Data structures.

Discrete structures.

Companion Course, if any: --

Course Objectives:

- 1. To understand the fundamental concepts of database management. These concepts include aspects of database design, database languages, and database-system implementation.
- 2. To provide a strong formal foundation in database concepts, technology and practice.
- 3. To give systematic database design approaches covering conceptual design, logical design and an Overview of physical design.
- 4. To be familiar with the basic issues of transaction processing and concurrency control.
- 5. To learn and understand various Database Architectures and Applications.
- 6. To understand how analytics and big data affect various functions now and in the future.

Course Outcomes: On completion of the course, learner will be able to –

CO1. To define basic functions of DBMS & RDBMS.

CO2. To analyze database models & entity relationship models.

CO3. To design and implement a database schema for a given problem-domain. CO4. To populate and query a database using SQL DML/DDL commands.

CO5. Do Programming in PL/SQL including stored procedures, stored functions, cursors and packages.

CO6. To appreciate the impact of analytics and big data on the information industry and the external ecosystem for analytical and data services.

Course Contents						
Unit I	Introduction TO DBMS	(8 Hrs)				
Introduction: Database Concepts, Database System Architecture, Data Modeling: Data Models, Basic Concepts, entity, attributes, relationships, constraints, keys.						
Relational Model: Basic of database. Relational Integr Diagram.	Relational Model: Basic concepts, Attributes and Domains, how the relational models builds biological database. Relational Integrity: Domain, Entity, Referential Integrities, Enterprise Constraints, Schema Diagram.					
		\sim				
Mapping of Course Outcomes for Unit I	CO1: To define basic functions of DBMS & RDBMS.	G:				
Unit II	Database Design And SQL	(8 Hrs)				
Database Design: Functional Dependency, Purpose of Normalization, Data Redundancy.						
Introduction to SQL: Characteristics and advantages, SQL In Bioinformatics database, SQL Data Types and Literals, Tables: Creating, Modifying, Deleting, Views: Creating, Dropping, Updating using Views, Indexes, Nulls SQL DML Queries: SELECT Query and clauses, biological query, uniqueness. Set Operations, Predicates and Joins, Set membership, BIOLOGICAL Tuple Variables, Set comparison, Ordering of Tuples, Nested Queries, Database Modification using SQL Insert.						
Mapping of Course Outcomes for Unit II	Mapping of Course Outcomes for Unit IICO2: To analyze database models & entity relationship models.					
Unit III	Query Processing	(8 Hrs)				

Query Overview, Evaluation of expression, Operators, Materialization and Pipelining algorithm. Serializability: Conflict and View, Cascaded Aborts, Recoverable and No recoverable Schedules. Programmatic SQL: Embedded SQL, Dynamic SQL, biological transactions, database updation, protein databases. how to update databases.

Mapping of Course	CO3: To design and implement a database schema for a given problem-		
Outcomes for Unit III	domain.		
	Advanced Detahogog	(0 11	
Unit IV	Auvanced Databases	(8 Hrs)	
Concurrency Control: Need, Locking Methods, Deadlocks, Time-stamping Methods, and Optimistic			
Techniques. Checkpoints, Performance Tuning, Query Optimization with respect to SQL Database.			
Database Architectures: 2	Tier and 3 Tier Architecture, Introduction to Paralle	el Databases, Key elements	
of Parallel Database Processing, Architecture of Parallel Databases, Introduction to Distributed Databases,			
parallel and distributed databases and their advantages for biological data.			
Mapping of Course	Irse CO4: To populate and query a database using SQL DML/DDL commands		
Outcomes for Unit IV			
Unit V	Large Scale Data Management	(8 Hrs)	

Emerging Database Technologies: Introduction to SQL Databases- Internet Databases, Cloud Databases, Mobile Databases, SQLite Database, XML Databases

Introduction to Big Data and XML: DTD, XML Schemas, XQuery, XPath.

Python. Introduction to Hadoop: Introduction to HBase: Overview, HBase Data Model, HBase Region, Hive. Managing genomic data and proteomic data, using the large scale data management technologies.

Mapping of Course Outcomes for Unit V	CO5: Do Programming in PL/SQL including stored cursors and packages	procedures, stored functions,
Unit VI	Data Warehousing And Data Mining	(8 Hrs)
Data Warehousing: Introduc	tion Evolution of Data Warehouse Characteristics	Banafits Limitation of Data

Data Warehousing: Introduction, Evolution of Data Warehouse, Characteristics, Benefits, Limitation of Data Warehousing, Architecture and Components of Data Warehouse, Conceptual Models

Data Mining: concept, Process, Knowledge Discovery, Goals of Data Mining in biology, Data Mining Tasks, Association, Classification, Clustering, Big Data (Terminology and examples) Introduction to Machine learning for Big Data in biology.

Mapping of Course	CO6: To appreciate the impact of analytics and big data on the information
Outcomes for Unit VI	industry and the external ecosystem for analytical and data services.

Learning Resources

Text Books:

- 1. Silberschatz A., Korth H., Sudarshan S, Database System Concepts, McGraw Hill Publication, ISBN-0-07-120413-X, Sixth Edition.
- 2. S. K. Singh, Database Systems: Concepts, Design and Application, Pearson Publication, ISBN-978-

81-317-6092-5.

Reference Books:

- 1. Kristina Chodorow, Michael Dirolf, MongoDB: The Definitive Guide, O'Reilly Publications,
- 2. Jiawei Han, Micheline Kamber, Jian Pei, Data Mining: Concepts and Techniques, Elsevier,
- 3. Bill Schmarzo, Big Data: Understanding How Data Powers Big Business, Wiley, 978-81-265-4545-2

MOOC / NPTEL Courses link / Any other e- resources link:

For example

1. NPTEL Course "Database Management system" https://nptel.ac.in/courses/106/105/106105175/

Virtual LAB Link:

1. Vlabs: Database Management system http://vlabs.iitb.ac.in/bootcamp/labs/dbms/exp8/exp/theory.php

Sa	avitribai Phule Pune Univ	versity	
Third Year of B.Tech. Biotechnology (2019 Course)			
315475 :	Fermentation Technolog	gy Lab	
Teaching Scheme:	Teaching Scheme: Credit Examination Scheme:		
Teaching Scheme: PR: 4 Hrs/week02Examination Scheme: OR: 50 M Total : 50 M			
Prerequisites:- Microbial Techniques, Basic analytical Techniques			
Course Objectives:			
1. To train students for handling of micro biomolecules	bial cultures and perform fer	rmentation processes for produ	iction of different
2. To train students to optimize fermentat	ive production processes and	l learn effect <mark>of various</mark> parame	eters on processes
3. To train students to learn different mod	les of fermentations like SLF	SSF etc.	

Course Outcomes: On completion of this course, students will be able to

CO1. Handle microbial cultures and perform fermentative processes for production of different biomolecules

CO2. Optimize production process and evaluate effect of different parameters on total product yield

CO3. Perform Different modes of Fermentations like SSF, immobilization of Cells etc.

Suggested List of Laboratory Assignments (Any 8)

Sr. No.	Group A	
1	Pretreatment, preparation of fermentation media and sterilization of media.	
2	Determination of size of inoculum and fermentative production of organic acid (Citric Acid).	
3	Estimation of Reducing sugars (Pre and post fermentation) from fermentation broth.	
4	Estimation of proteins from fermentation broth during fermentation	
5	Estimation of Biomass production during fermentation process.	
Sr. No.	Group B	
1	Preparation of wine from fruits and quality assessment.	
2	Lab scale production of Industrially important Enzyme from microorganisms, like Amylases.	
3	Study of substrate utilization kinetics in fermentation for determination of yield.	
4	Study of product formation kinetics in fermentation for determination of yield.	
Sr. No.	Group C	
1	Study of changes in pH profile of fermentation media during fermentation process to understand metabolic activities of microorganisms.	
2	Immobilization of Yeast cells for alcohol production.	
3	Production of alcohol using immobilized yeast cells	

Lab Assessment will be based on the following points

- 1. Regularity and sincerity of students during lab Practicals
- 2. Journal presentation
- 3. Understanding of the experiment
- 4. Performance in unit tests
- 5. Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents. It is necessary to protect the eyes and face from splashes
- 5. All chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 6. Reagents to be stored should be labeled with due discarding date.
- 7. Instructions for proper disposal of waste material should be followed.

Virtual LAB Link:

Estimation of Carbohydrates from Fermentation Broth

http://vlab.amrita.edu/?sub=3&brch=73&sim=1139&cnt=2

Fermentation of microbial product (Acetone -Butanol-Ethanol)

http://209.211.220.205/model/abef/theory.html

Fermentation of microbial product bioopolymer) http://209.211.220.205/model/bp/theory.html

Use of alginate for cell immobilization http://209.211.220.205/model/iwc/theory.html

Study of fermenter design http://209.211.220.205/model/15lb/theory.html

Effect of aeration in fermentation http://209.211.220.205/model/15lb/theory.html

Savitribai Phule Pune University Third Year of B.Tech. Biotechnology 2019Course) 315476 :Mass Transfer Lab			
Teaching Scheme:		Credit	Examination Scheme:
Teaching Scheme: PR: 2 Hrs/week		01	Examination Scheme: TW: 50 Marks Total : 50 Marks
Prerequisite	es:- Understanding of basic mass	s transfer principles	and unit operations
Course Obje	Course Objectives:		
1. To demo	nstrate students to biphasic and inte	rphasic diffusion syst	ems.
2. To study	various unit operations with different	nt characteristics.	s S
3. To study crystallis	3. To study design and optimization of parameters while working with equipments like dryers, distillation tower, crystallisers etc.		
Course	Outcomes:		
On completi	on of this course, students will be a	ble to	
CO1. Visual	ize phase separation and calculate c	liffusion co-efficient of	of various systems.
CO2. Learn	about detailed design and working	of different unit opera	tions and its characteristics.
CO3. Able to	o optimize equipment performance	parameters for better	product yield and equipment efficiency.
	Suggested List o	f Laboratory As	signments (Any 8)
Sr. No.	Group A		
1	Liquid-Liquid diffusion – To calculate the diffusion co-efficient for a liquid-liquid system.		
2	Solid-Liquid diffusion – To calculate the diffusion co-efficient for a solid-liquid system.		
3	Interphase Mass transfer Co-efficient- To calculate the individual and overall Mass transfer co-efficient.		
Sr. No.	Group B		
	Process of Crystallization and its characteristics.		
2	Tray Dryer- To study the characteristics of Tray Dryer		
	Differential/Steam distillation		
	Liquid-Liquid Extraction to calculate the partition co-efficient of LLE.		
Sr. No.	Group C		
	Batch/ continuous leaching		
	Fluidized Bed Dryer- To study the characteristics of fluidized bed dryer.		
3	To study the design and operating principle of spray dryer.		

Lab Assessment will be based on the following points

- 1. Regularity and sincerity of students during lab Practicals
- 2. Journal presentation
- 3. Understanding of the experiment
- 4. Performance in unit tests
- 5. Attendance during theory lectures

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Enter the usage of chemicals and equipment's in a logbook
- 3. Students should make aware of hazard warning symbols on reagent bottle
- 4. Protective devices must be worn while handling acid bottles and preparing appropriate solvents. It is necessary to protect the eyes and face from splashes
- 5. All chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after use.
- 6. Reagents to be stored should be labeled with due discarding date.
- 7. Instructions for proper disposal of waste material should be followed.

Savitribai Phule Pune University Third Year Of B.Tech. Biotechnology (2019 Course) 315477 : Bioseparation Engineering LAB			
Teac	hing Scheme:	Credit	Examination Scheme:
Teaching	Scheme: PR: 4 Hrs/week	02	Examination Scheme: PR : 50M Total : 50M
Prerequis	sites:-	1	
Analytica	l Techniques, Biochemistry		
Course	Objectives:		0
1. To train	students for use of different cell disru	uption techniques	Coi
2. To train	students to learn different separation	techniques like P	recipitation, Dialysis etc
3. To train students to understand application of modern separation techniques like membrane separation			
using T	CFF, Instrumentation of HPLC etc.		
Course Outcomes:			
On completion of this course, students will be able to			
CO1. Apply different cell disruption techniques for purification of biomolecules			
CO2. Use	different separation techniques for separa	ation and purification	on of biomolecules
CO3. Co Techniqu	rrelate basic principles of Bioseparati es.	ion engineering a	nd development of modern separation
	Suggested List of La	boratory Assi	gnments (Any 8)
Sr. No.		Group A	
1	Cell disruption using Ultra sonication		
2	Use of Blender for disruption of plant tissue		
3	Lab scale Homogenization of Baker's Yeast		
Sr. No.	Group B		
1	Adsorption on charcoal: Application in removal of unwanted dye.		
2	Precipitation of proteins using Ammonium Sulphate.		
3	Purification of proteins using Dialysis		
Sr. No.	Group C		
1	Separation of casein protein from milk using isoelectric point		
2	Study of tangential flow filtration S	Study of SDS-PAGE for determination of molecular weight of proteins	
- 3	Suury of SDS-FAGE for determination of molecular weight of proteins		

Lab Assessment will be based on the following points

- 1. Present/Absent
- 2. A completion date of the journal
- 3. Regularity
- 4. Understanding
- 5. Presentation

Guidelines for Laboratory Conduction

The following rules must be observed during laboratory conduction

- 1. Lab coat should be worn by students before entering the laboratory
- 2. Students shall keep their belongings on storage rack
- 3. Loose hair and flowing parts of apparel shall be properly tied before commencing of work
- 4. Enter the usage of chemicals and equipment's in a logbook
- 5. The instruction manual should be read before operating any instrument
- 6. Students should make aware of hazard warning symbols on reagent bottle
- 7. Protective devices must be worn when it is necessary to protect the eyes and face from splashes
- 8. All chemicals, glassware, reagents and plastic wares should be kept on their appropriate place after u.
- 9. Reagents to be stored should be labeled with due discarding date 10. Instructions for proper disposal of waste material should be followed
- 10.Report accidental cuts or burns to the instructor immediately
- 11. Perform the experiment. Collect data in a clear and organized fashion.
- 12. Be sure to note the units for each measurement. Also, be sure to participate in the experiment rather than just recording data for your group

General Guidelines:

Before starting any experiment, clearly define the goals. What question are you answering or what principle are you trying to demonstrate? What data is needed to solve the problem?

Savitribai Phule Pune University Third Yearof B.Tech. Biotechnology (2019 Course) 315478 :Audit Course 6

In addition to credits courses, it is recommended that there should be audit course (non-credit course). Audit course is for the purpose of self-enrichment and academic exploration. Audit course carry no academic credit. Selection of audit courses helps the learner to explore the subject of interest in greater details resulting in achieving objective of audit course's inclusion. Evaluation of audit course will be done at institute level. Method of conduction and method of assessment for audit courses is suggested.

Criteria:

The student registered for audit course shall be awarded the grade AP(Audit course pass) and shall be included such grade in the semester grade report for that course, provided students has the minimum attendance as prescribed by the Savitribai Phule Pune university and satisfactory in-semester performance and secured a passing grade in that audit course. No grade point is associated with this "AP" grade and performance in these courses is not accounted in the calculation of the performance indices SGPA andCGPA.

Guidelines for Conduction and Assessment (Any one or more of following but not limited to)

- 1. Lecture/Guest lecture
- 2. Visit (Social/field) and reports
- 3. Demonstration Surveys
- 4. Mini project
- 5. Hands on experience on specific focused topic.
- 6. Seminar/Workshop

Guidelines for Assessment (Any one or more of following but not limited to)

- 1. Written test
- 2. Quiz
- 3. Demonstrations/practical test
- 4. Presentations
- 5. IPR/publication
- 6. Report

Audit course 2 Options (Anyone)

315478:A: Technical Communication

315478:B: Financial Management

Savitribai Phule Pune University

Third Year of B.Tech. Biotechnology (2019 Course)

315479 :Internship

Credits:4

TW: 100 Marks

Total Marks:-100

Course Objectives:

- 1. To encourage and provide opportunities for students to get professional/personal experience through internships.
- 2. To learn and understand real life/industrial situations.
- 3. To get familiar with various tools and technologies used in industries and their applications.
- 4. To nurture professional and societal ethics.
- 5. To create awareness of social, economic and administrative considerations in the working

environment of industry organizations

Course Outcomes:

On completion of the course, learners should be able...

CO1: To demonstrate professional competence through industry internship.

CO2: To apply knowledge gained through internships to complete academic activities in a professional manner.

CO3: To choose appropriate technology and tools to solve given problem.

CO4: To demonstrate abilities of a responsible professional and use ethical practices in day to day life.

CO5:Creating network and social circle, and developing relationships with industry people.

CO6: To analyze various career opportunities and decide carrier goals.

Guidelines:

Internships are educational and career development opportunities, providing practical experience in a field or discipline. Internships are far more important as the employers are looking for employees who are properly skilled and having awareness about industry environment, practices and culture. Internship is structured, short-term, supervised training often focused around particular tasks or projects with defined time scales. Core objective is to expose technical students to the industrial environment, which cannot be simulated/experienced in the classroom and hence creating competent professionals in the industry and to understand the social, economic and administrative considerations that influence the working environment of industrial organizations. Engineering internships are intended to provide students with an opportunity to apply conceptual knowledge from academics to the realities of the field work/training. The following guidelines are proposed to give academic credit for the internship undergone as a part of the Third Year Engineering curriculum

Duration:

As per the apex bodies' recommendations and guidelines, it is need of the day to train the pre-final year students for the industrial readiness through internship. As per the guidelines of AICTE, the duration of internship is 4-6 weeks after completion of semester V and before commencement of semester VI, so it is apparent that the contact hours of the TE students need to be managed meticulously. It becomes mandatory as per the structure that 4 credits for internship must earned by the students. Internship to be completed after semester 5 and to be assessed in semester 6. Internship will be of 4 to 6 weeks maximum.

Internship work Identification:

Student may choose to undergo Internship at Industry/Govt. Organizations/NGO/MSME/Rural Internship/ Innovation/IPR/Entrepreneurship. Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/ Medium enterprises to make themselves ready for the industry[1].

Students must register at Internshala [2]. Students must get Internship proposals sanctioned from college authority well in advance. Internship work identification process should be initiated in the Vth semester in coordination with training and placement cell/ industry institute cell/internship cell. This will help students to start their internship work on time. Also, it will allow students to work in vacation period after their Vth semester examination and before academic schedule of semester VI.

Student can take internship work in the form of the following but not limited to:

- Working for consultancy/ research project,
- Contribution in Incubation/ Innovation/ Entrepreneurship Cell/ Institutional Innovation Council/ startups cells of institute /
- Learning at Departmental Lab/Tinkering Lab/ Institutional workshop,
- Development of new product/ Business Plan/ registration of start-up,
- Industry / Government Organization Internship,
- Internship through Internshala,
- In-house project work, intercollegiate, inter department research internship under research lab/group, micro/small/medium enterprise/online internship
- Research internship under professors, IISC, IIT's, Research organizations,

- NGOs or Social Internships, rural internship,
- Participate in open source development.

Internship Diary/ Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered and suggestions given, if any. The training diary/workbook should be signed every day by the supervisor. Internship Diary/workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training.

Internship Work Evaluation:

Every student is required to prepare a maintain documentary proofs of the activities done by him as internship diary or as workbook. The evaluation of these activities will be done by Programme Head/Cell In-charge/ Project Head/ faculty mentor or Industry Supervisor based on- Overall compilation of internship activities, sub-activities, the level of achievement expected, evidence needed to assign the points and the duration for certain activities.

Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External

- a supervisor from place of internship.)

Recommended evaluation parameters-Post Internship Internal Evaluation -50 Marks + Internship

Diary/Workbook and Internship Report - 50 Marks

Evaluation through Seminar Presentation/Viva-Voce at the Institute-

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

- Depth of knowledge and skills
- Communication & Presentation Skills
- Team Work
- Creativity
- Planning & Organizational skills
- Adaptability
- Analytical Skills
- Attitude & Behavior at work

Societal Understanding
Ethics
Regularity and punctuality
Attendance record
Diary/Work book
Student's Feedback from External Internship Supervisor
After completion of Internship, the student should prepare a comprehensive report to indicate what he has observed and learnt in the training period

Internship Diary/workbook may be evaluated on the basis of the following criteria:

- Proper and timely documented entries
- Adequacy & quality of information recorded
- Data recorded
- Assays/protocols used
- Organization of the information

The report shall be presented covering following recommended fields but limited to,

- Title/Cover Page
- Internship completion certificate
- Internship Place Details- Company background-organization and activities/Scope and

object of the study / Supervisor details

- Index/Table of Contents
- Introduction
- Title/Problem statement/objectives
- Motivation/Scope and rationale of the study
- Methodological details
- Results / Analysis /inferences and conclusion
- Suggestions / Recommendations for improvement to industry, if any
- Attendance Record
- Acknowledgement
- List of reference (Library books, magazines and other sources)

Feedback from internship supervisor(External and Internal)

Post internship, faculty coordinator should collect feedback about student with recommended parameters include as- Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Team work, Leadership.....

Reference:

[1] https://www.aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf[2] https://internship.aicte-india.org/