Total N	o. of Questions : 5]	SEAT No. :		
PA-2:	562			
a 25a A gazar e	[5948	-302		
	M.C.A. (Ma	707		
	IT-32: DATA WAREHOUS	SING AND DATAMINING		
	(2020 Pattern) ((Semester - III)		
Time: 2	1/2 Hours	[Max. Marks: 50		
Instruct	ions to the candidates:	[HAMA HAM NO . 30		
1) 2)	All questions are compulsory. Draw near & labelled diagrams whe	Wayyar Magaggani		
7	2 rum neur at tubeneur diagrams whe	rever necessary.		
01) 1				
	nswer the following multiple- choice.			
a)	rules for extration are performe	from source to destination, recomending		
	i) ETL Tools	ii) Database tools		
	iii) Mining Tools	All of the mentioned		
b)	Text mining tasks involves	And the mentioned		
	i) Text Categorization	ii) Text clustering		
	iii) DFD	iy) Both (i) and (ii)		
c)	Web page contents used for mir			
	i) Log files	ii) Web page contents		
	iii) Images	iv) Audio		
d)	Google PR checker, Lin viewer	are tools for		
	i) Text mining	ii) Web content mining		
	iii) Web structure mining	iv) Web usage mining		
e)	K in the K-means Algorithm sta	nds for		
	i) Data set	ii) Number of clusters		
	iii) Error function	iv) Knowledge		
.I)		nder which type of clustering method?		
	i) Partition method	ii) Hierarchical method		
	iii) Both (i) and (ii)	iv) Nither (i) and (ii)		
g)	In Bayes is Theorem Class cond	itional probability is called as		
	i) Evidence	ii) Likelihood		
	iii) Prior	iv) Posterior		

h)	K-means squared error function is related with which of the following?				
	i)	Manhattan distance	⊝ii)	Hamming distance	
	iii)	Euclidean distance	iv)	Minkowski distance	
i)			on ar	nd the subjects about an entire	
	orga	nnization.			
	i)	Data Mart	ii)	Virtual warehouse	
	iii)	Data warehouse view	iv)	enterprise warehouse	
j)		ar schema has which types of a tables?	elatio	onship between dimentional and	
	i) (**	Many to many	ii)	One to one	
	iii)	One to many	iv)	All of the mentioned	
k)	and	maps the core warehouse noise useful to end users.	netad	ata to business concepts, familiar	
	i)	Application level metadata	ii)	User level metadata	
	iii)	End user level metadata	iv)	Core level metadata	
l)	Whi	ch of the following is not a con	npon	ent of a data warehouse?	
	i) .	Metadata	ii)	Current detailed data	
	iii)	Lightly summarized data	iv)	Component key	
m)	Whi	ch is NOT a basic conceptual	schen	na in Data warehouses?	
	i)	Star schema	ii)	Tree schema	
	iii)	Snowflake Schema	iv)	Fact constellation schema	
n)	The	Extract process is			
/	i)	Capturing all of the data conta	ined	in various operational system	
	ii)	Capturing sub set of the data co	ontair	ned in various operational system	
	iii)	Capturing all of the data co systems	ntain	ed in various decision support	
	iv)	Capturing of sub set of the data systems.	i cont	ained in various decision support	

0)	An array in which data is stored are characterized by multiple dimension is a			
	i)	Table	ii)	Cube
	iii)	Schema	iv)	Collection
p)	Wh	ich of the following is NOT an	adva	ntage of ROLAP?
	i)	High data efficiency	ii)	Scalability
	iii)	High utilization of resources	iv)	Flexible
q)	Data	a environment of a	is in t	the 3 rd normal form
	i)	OLAP	ii)	OLTP
	iii) _	Data warehouse	iv)	both (i) & (ii)
r)	-	operation gets data from c	oarse	r granularity to fine granularity
	i)	Roll up	ii)	Dice
	iii)	Pivot	iv)	Drill Down
s)	Data	n mining contributes to	3/	
	i)	Data ware house	ii)	Data stores
	iii)	Knowledge base	iv)	Pattern finding
t)	Data	mining can be performed on_		
	i)	Spatial database	ii)	Tomporal data
	iii)	Text database	iv)	All of the mentioned
a)	Disc	uss the schemas is Data ware	hous	ing with the help of employee
		base example.		[5]
b)			ional	data and ware house data based
	on u	nere characteristic. OR		[5]
a)	Expl		areho	We with a neat diagram [5]
b)	Explain the architecture of a Data warehouse with a neat diagram. [5] Name the different OLAP architectures. Pick any two (2) and describe in			
		l with advantage.	u1 03	[5]
			dit.	

- Q3) a) What are Discretization and concept Hierarchy generation process? Give an example for each.[5]
 - b) Explain the tools used for data warehouse development. [5]

OR

- a) Explain the different data sources for data warehouse and methods of data collection. [5]
- b) Explain the different steps of creating on OLAP, with examples. [5]
- Q4) a) Consider the data set given below, compute the support for item sets {e}, {b, d} and {b, d, e} [5]

customer ID	Transaction ID	Items Brough
1.5	0001	{a, d, e}
1		
1	0024	{a, b, c, e}
2	0012	{a, b, d, e}
2	0031	{a, c, d, e}
3	0013	{b, c, e}
3	0022	{b, d, e}
4	0029	{c, d}
4	0040	{a, b, c}
5	0033	{a, d, e} €
5	0038	{a, b, e}

b) Using the result from problem a, above, compute the confidence for the association rules $\{b, d\} \rightarrow \{e\}$ and $\{e\} \rightarrow \{b, d\}$ [5]

a) A consultancy wants to categories MCA students into classes as Excellent, Good, and Average. The data collected from students are their average percentage in MCA- I year and result of the apptitude test conducted by the consultancy.

Solve the problem using decision tree Algorithm.

[5]

b) Using Bayes an classification to classify the sample data: {6, 43}. As male or female. Training data is given. [5]

Person	Height	Weight
Male	6.2	82
Male	5.11	65
Male	5.7	58
Male	5.11	55
Female	4.10	42
Female	5.5	50
Female	5.0	43
Female	5.75	50

Q5) a) Construct a FP-Tree Algorithm, to find frequency patterns for the given data.

Transaction ID	Item Bought	
100	{f, a, c, d, g, i, m, p}	
200	{a, b, c, f, l, m, o}	
300	{b, f, h, j, o}	
400	{b, c, k, s, p}	
500	{a, f, c, e, l, p, m, n}	

b) Explain Hierarchical clustering using examples.

[5]

OR

[5948]-302

5

LIBRAR'

a) Perform K. means clustering and show all the calculations at each iteration, to form the final cluster. Assume the initial clusters are A, E and H. [5]

Points	X1	X2 ,
A	3	3
В	8	5
C	40	4
D	2	\$ 4
Е	7	7
F	3	8
G	$\sqrt{3}$	5
H	* 4	8
I S	6	9
J	9	6

b) What are agent based and database based approaches in web mining? Explain with example. [5]

