Total N	o. of	Questions	:	5]
----------------	-------	-----------	---	----

P5123

SEAT No. :

[Total No. of Pages: 3

[5823]-103

F.Y. B.Sc. (Computer Science)

MATHEMATICS

MTC - 111: Matrix Algebra

(2019 Pattern) (Semester - I) (Paper-I)

Time: 2 Hours]

[Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Use of single memory, non-programmable scientific calculator is allowed.
- Q1) Attempt any five out of seven.

[10]

a) Describe the nature of solution for the following system of linear equations.

$$x + y = 6$$

$$3x + 3y = 18$$

b) If
$$u = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
, $v = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, then compute, $u + v$, $u + 5v$.

Is the following matrix in reduced row echelon form? Justify $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

d) If
$$A = \begin{bmatrix} 3 & -2 \\ 5 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 4 \\ 6 & -7 \end{bmatrix}$. Find, $A - 4B + 7I_2$.

e) Determine whether the following matrix is invertible or not. If yes find its inverse $A = \begin{bmatrix} 8 & 1 \\ 5 & 2 \end{bmatrix}$.

- f) Write the standard matrix for the transformation that gives reflection through the x_1 -axis.
- g) If A is 3×7 matrix and nullity(A) = 4, then find the rank (A).

Q2) Attempt any three out of five.

[15]

a) Compute the solution of the following system by using Cramer's rule,

$$5x_1 + 7x_2 = 3$$

$$2x_1 + 4x_2 = 1$$

b) Solve the following system of linear equations.

$$x_2 + 4x_3 = -5$$

$$x_1 + 3x_2 + 5x_3 = -2$$

$$3x_1 + 7x_2 + 7x_3 = 6$$

- c) If A is an m×n matrix, $u,v, \in \mathbb{R}^n$ and C is a scalar, then prove that,
 - a) A(u+v) = Au + Av
 - b) A(Cu) = C(Au)

d) Let,
$$V_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}, V_2 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}, V_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}.$$

Does {V₁,V₂,V₃,} Span R⁴? Justify.

e) Let, T: $R^2 \to R^3$ be a linear transformation, such that $T(x_1, x_2) = (x_1 - 2x_2, -x_1 + 3x_2, 3x_1 - 2x_2)$. Find X such that, T(X) = (-1, 4, 9).

a) Find basis for col A and Nul A of the following matrix A.

$$A = \begin{bmatrix} 3 & 3 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1 \end{bmatrix}$$

Also find rank and nullity of A.

- b) i) Find the volume of the following parallelepiped with one vertex at the origin and adjacent vertices are (1, 0, -3), (1, 2, 4) and (5, 1, 0).
 - ii) Solve the following system of linear equations.

$$x_1 + x_3 = 2$$
$$-2x_1 + x_2 - 6x_3 = -1$$
$$x_2 + 8x_3 = 6$$

