Total No. of Questions : 5]

P1383

SEAT No. :

[Total No. of Pages : 3

[Max. Marks: 35

[5]

[5623]-1003 F.Y. B.Sc. (Computer Science) MATHEMATICS **IFC - 111 : Matrix Algebra** 2019 Pattern) (Paper - I)

Time : 1½ Hours] Instructions to the candidates:

- Q.1 is compulsory. 1)
- Solve any three questions from Q.2 to Q.5. 2)
- Figures to the right indicate full marks. 3)
- Use of single memory, non-programmable scientific calculators is allowed. 4)

Q1) Attempt any five of the following :

- Describe the nature of the solution of the following system of linear a) equations.
 - x + y = 1
 - x y = 1
- Find an elementary matrix E such that EA = I, where A b) S. Contente

and v =then compute

> i) u + 7v

 $\sqrt{2}u$

ii)

- State Rank Nullity theorem for matrix. d)
- Suppose a 4×7 coefficient matrix for a system of linear equations has 4 e) pivots. Is the system consistent? How many solutions are there?
- Write the standard matrix for transformation that gives reflection through f) x_1 - axis.

Q2) a) Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove that T is one to one if and only if the equation T(X) = 0 has only trivial solution. [6]

[5623]-1003

(Q4) a) Find inverse of the following matrix A by row reduction method

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$
(6)
Find the basis for ColA and for NulA, where $A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix}$
(6)
b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation, defined as $T(x_{1}, x_{2}) = (x_{1} - 2x_{2}, -x_{1} + 3x_{2}, 3x_{1} - 2x_{2})$ Find X such that $T(X) = (-1, 4, 9)$.
(4)
(25) Attempt any two of the following:
(a) Find AB using the partitioned matrices shown below,

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & 4 \\ 1 & 5 & -2 & 3 & -1 \\ 0 & -4 & -2 & 7 & 1 \end{bmatrix}$$
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation such that,

$$T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$$
Find the images of $\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$ and $\begin{bmatrix} -5 \\ -3 \end{bmatrix}$.
(c) Use Cramer's rule to compute the solutions of following system :

$$x + y + 2z = 7$$

$$x - 2y + 3z = 6$$

$$3x - 7y + 6z = 1.$$