Total N	lo. of	Questions	:	5]	
----------------	--------	-----------	---	----	--

SEAT No.:

P1386

[Total No. of Pages : 2

[5623]-1006

F.Y. B.Sc. (Computer Science)

ELECTRONIC SCIENCE

ELC - 112 Principles of Digital Electronics

(Semester - I) (New Pattern) (CBCS - 2019)

Time: 2 Hours]

[Max. Marks: 35

Instructions to the candidates:

- 1) Q.1 is compulsory.
- 2) Solve any three questions from Q.2 to Q.5.
- 3) Questions 2 to 5 carry equal marks.
- Q1) Solve any five of the following:

 $[5 \times 1 = 5]$

- a) $(1)_2 + (1)_2 + (1)_2 = (?)_2$.
- b) This gate is
 - i) NAND.
 - ii) NOR.
 - iii) NOT.
- c) For a demultiplexer with 24 outputs the number of control inputs are
- d) Find 1's complement of $(25)_{10}$.
- e) Define noise immunity.
- f) "Multiplexer circuit can be built by using OR OR combinations of logic gates". State whether this statement is true or false.
- **Q2)** a) i) Perform $(100)_{10} (33)_{10}$ using 2's complement method. [3]
 - ii) Solve following equation using Boolean Algebra $Y = \overline{A}(B+C) + \overline{C} + AB$. [3]
 - b) Draw symbol and truth table of NAND and EX-OR Gate. [4]

P.T.O.

Convert the following expression into standard SOP form. **Q3)** a) [3] i)

$$Y = AB + \overline{B}C + \overline{C}$$

- Explain working of 3 × 4 matrix keyboard encoder. [3]
- Draw and explain working of 1:4 demultiplexer. b) [4]
- Simplify the following expression using K map [3] **Q4**) a) i)

$$Y = \overline{PQR} + \overline{PQR} + \overline{PQR} + \overline{PQR} + \overline{PQR}$$

- Draw logic circuit diagram for BCD to 7 segment converter. Give the logic levels to display digit '9' on common anode display. [3]
- Perform the following [4] b)
 - $(11011)_{\text{gray}} = (?)_2$
 - $(A5\cdot D)_{16} = (?)_{10}$ ii)
- Q5) Attempt any four of the following:

[10]

- Write a short note on BCD code. a)
- State and prove De-Morgan's theorem. b)
- Explain use of EX OR gate as parity generator. c)
- Write the truth table for 3 bit binary to gray conversion. d)
- Define following: e)
 - Fan in i)
 - 11) Fan out.
- Explain working of half Adder. f)