Total No. of Questions: 12]	SEAT No. :
	I

P3974 [Total No. of Pages: 3

[5353]-516

T.E. (Mechanical Sandwich) (Semester - II) NUMERICAL METHODS AND OPTIMIZATION (2015 Pattern)

Time : 2½ *Hours*] [Max. Marks: 70

Instructions to the candidates:

- Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10, Q.11 or Q.12.
- Neat diagrams must be drawn wherever necessary. 2)
- Figures to the right indicate full marks. 3)
- 4) Use of programmable calculator is not permitted.
- Assume suitable data, if necessary. 5)
- **Q1)** Using Newton Raphson method solve the equation $f(x) = e^{(x)} \cdot \cos(x) 1.4 = 0$ upto accuracy of 0.01.take initial gauss 0.2 [6]

- Q2) What do you mean by convergence? Explain its importance in brief. [6]
- Q3) Solve by Jacobi's iteration method, the equations [6]

$$2x - 3y + 20z = 25$$
;

$$20x + y - 2z = 17;$$

$$3x + 20y - z = -18$$

- Q4) Explain advantages of partial pivoting for solving simultaneous equations using Gauss elimination and Gauss Seidal method. [6]
- **Q5**) a) Maximize Z = 2x + 3ysubjected to the constraints

$$x + y \le 30$$

$$v \ge 3$$

$$0 \le y \le 12$$

$$x - y \ge 0$$

$$0 \le x \le 20$$
,

Use graphical method.

[5]

b) Determine the maximum value of root of equation 0. $51x - \sin(x)$ by Newton's method. Take the initial guess as 2 and do 4 iterations. [3]

Q6) Maximize
$$Z = 6x + 11y$$

[8]

subjected to the constraints

$$2x + y \le 104$$

$$x + 2y \le 76$$

$$x, y \ge 0$$

Use Simplex method.

Q7) a) Temperature at one surface of slab of thickness, x = 20 cm is T = 500°C. Find the temperature of the other surface of slab by taking step size in thickness, $\Delta x = 4 \text{ cm}$. Heat flux is 1000 W/m^2 . Use the following governing

relation of heat flow, $\frac{dT}{dx} = -\frac{q}{A} \left[\frac{1}{0.5(0.01T + 1)} \right]$ where q is a heat flow

through slab (in Watt) and A is cross-sectional area of slab (m^2). [8]

b) Solve the Laplace equation $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ for the square mesh as shown in diagram below. [10]

- **Q8)** a) Draw the flowchart for Simultaneous Equations by RK 2nd order method. **[6]**
 - b) Solve the heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subjected to the condition u(0,t)=u(1,t)=0 and u(x,0)=2x for $0 \le x \le \frac{1}{2}$ and u(x,0)=2(1-x) for $\frac{1}{2} \le x \le 1$. Take h=1/4 and k=1.

Q9) a) Draw the flow chart for $y = ab^x$.

[8]

[8]

b) Find the values of y for x = 0.5 for the following table of x, y values using Newton's forward difference formula. [8]

X	0	1	2	3%	4
У	1	5	25	100	250

OR

Q10)a) Using the method of least squares, fit the curve $y = ax^2 + \frac{b}{x}$ to the following data: [10]

x: 1	2	3	4
y: -1.51	0.99	3.88	7.66

b) Find the polynomial f(x) by using Lagrange's interpolation formula and hence find f(3) dx for the following series: [6]

X	0	1	2	5
y=f(x)	2	3	12	147

Q11)a) Draw the combine flowchart for Simpson's $\frac{1}{3}^{rd}$ and Simpson's $\frac{3}{8}^{th}$ rule.

b) Using Gauss Legendre three point formula, find $\int_0^2 e^x + 4x - 3$. [8]

OR

Q12)a) Find the integral $I = \int_0^{\pi} \sin(x) . dx$ using Trapezoidal rule.

b) Find double integral f(x, y) = 2x + y + 1 for n = 0 to 2 and y = 0 to 2. Use Simpson's $\frac{1}{3}^{rd}$ rule. [8]