Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[5252]-518

S.E.(Mechanical and Automobile Engineering) (Second Semester) EXAMINATION, 2017

ENGINEERING METALLURGY (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer four questions : Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagram should be drawn wherever necessary.
 - (iii) Use of non-programmable electronic pocket calculator is allowed.
 - (iv) Figures to the right indicate full marks.
 - (v) Write answers relevant to the question. Irrelevant statements will not score marks.
- 1. (a) Define the following terms:

[1+1+1+1=4]

- 1. Phase
- 2. Alloy
- 3. Grain
- 4. Nucleation.
- (b) Differentiate between microscopy and macroscopy. [4]
 - (c) What is the purpose of using etchant? Explain with diagram.

[2+2=4]

Or

- **2.** (a) Write Hume Rothery's rule of solid solubility. [4]
 - (b) Explain any two methods of grain size measurement. [2+2=4]

P.T.O.

(c)	Differentiate between transmission electron microscope	and
	scanning electron microscope.	[4]
(a)	What are the different types of cast iron? Explain gray	cast

- 3. (a) What are the different types of cast iron? Explain gray cast iron microstructure. State and justify the use of grey cast iron in two applications. [2+2+2=6]
 - (b) Draw neat diagram of microstructures and indicate phases present and their amounts into the following plain carbon steels under equilibrium conditions: [2+2=4]
 - (i) 0.2 % carbon steel,
 - (ii) 0.8 % carbon steel.
 - (c) Give brief explanation of austenite to pearlite transformation?

Or

- 4. (a) On an Iron-Iron carbide phase diagram, indicate the temperature range of the following heat treatment and mention relative cooling rates:
 - (i) Full Annealing
 - (ii) Normalising
 - (iii) Hardening
 - (iv) Process annealing
 - (v) Nitriding
 - (vi) Carburising.
 - (b) Differentiate between Martempering and Austempering. [4]
 - (c) Explain with the help of figure, Widmansttaten structure. [3]

[5252]-518

5.	(a)	Explain classification of steels on the basis of composition. [4]
	(<i>b</i>)	What do you understand by weld decay of austenitic stainless
		steel? State the methods of prevention of weld decay.
		[2+2=4]
	(c)	Prepare a table comparing alloy steels and plain carbon steels
		on the basis of the following: [4]
		(i) Corrosion resistance
		(ii) Hardenability
		(iii) Cost
		(iv) Toughness.
		Or S
6.	(<i>a</i>)	What will be the AISI equivalent of the following: [2+2=4]
		(i) C40
		(ii) T80.
	(<i>b</i>)	Explain with a neat sketch heat treatment cycle of high speed
		steel with proper reasoning. [4]
	(c)	Invar is an alloy containing 64% Iron and 36% Nickel. What
		is its most notable property? Stats and justify two applications
		for which this notable property is most suitable. [2+2=4]
7.	(a)	What is age hardening? Which alloys can be age hardened?
		[3+3=6]
	(b)	Give classification of copper alloys. Differentiate between brass
		and bronze. $[2+2=4]$
	(c)	Write a short note on bearing materials. [3]
	` /	

State true or false and justify: 8. (a)

[2+2+2=6]

- Aluminium alloys are widely used in aeronautic and (1) automotive applications.
- Tin Bronzes show pronounced coring. (2)
- (3)60/40 brass can be easily cold worked.
- (*b*) Name the base metal for the following alloys [4]
 - (i) Duralumin
 - (ii) Gun metal
 - (iii) Berylium bronze
 - (iv) Monel.
- In a photo micrograph of a polycrystalline cartridge brass (c) specimen, regions having relatively straight and parallel sides and, a shade contrast than the surrounding are observed. What can be these regions?

Can this feature be used to differentiate between 'as cast' and 'cold worked + annealed' conditions of the alloy ? Explain in two sentences. [1+2=3]