Total No. of Questions: 10]		8	SEAT No. :					
P3641	[5560	1-597	[Total No. of Pages : 5					
	T.E.(-X-Y						
	SYSTEM PRO		NG					
(2015 Course) (Semester - II) (314451)								
Time: 2½			[Max. Marks : 70					
Instruction 1)	ns to the candidates: Answer Q1 or Q2, Q3 or Q4, Q5 or	r 06 07 or 08	09 or 010					
2)	Neat diagrams must be drawn when							
3)	Figures to the right indicate full m	arks.	Con					
4)	Assume suitable data if necessary.							
	U' 36'							
Q1) a)	For the following piece of asse							
	of Symbol Table, Literal Table Assume the machine opcode a							
	START 200	ild Size of fils	truction as 1. [0]					
	MOVER AREG, A	S. W.						
		100						
	ADD BREG, = '2'							
	ADD CREG, = '3'							
	ORIGIN L+20							
	LTORG							
	MOVER, AREG, C							
	C EQU L+15							
	ADD AREG, = '2'		S Six					
	ADD BREG, = '5'		Sold Siring Stairs					
	A DS 5		0,0					
	END	Ĉ						
b)	Define Loader and Enlist the b	asic functions	of Loader. [4]					
	0.	R						
		6	·					
		26.						
			n_{TA}					
		×,	P.T.O.					

Q4) a)	State True or False and justify your answer:	[5]			
	A unit of specification for a program generation through expansion is called as Compiler.				
	i) An AGO <sequencing symbol=""> statement unconditionally transfers control.</sequencing>				
	iii) APTAB and EVTAB data structures are constructed during pa of Macro pre-processor.	ıss II			
	iv) A language processor which bridges an execution gap but is language translator is called as detranslator.	not a			
	v) The process of replacement of a character string by another character string during program generation is called as semantic expansi				
b)	Describe the data structures required in design of two pass Direct Lin Loader with suitable example.	king [5]			
Q 5) a)	Differentiate between Top Down and Bottom Up Parser.	[4]			
	Define Handle and Handle Pruning w.r.t Bottom up parser.	[4]			
	For given Grammar S \rightarrow 0S1 01				
	Identify the handles at each step and Parse the string 000111				
c)	For the following grammar	[8]			
	$S \rightarrow AaBb$				
	$A\!\!\to\!\epsilon$	3			
	$B \to \epsilon$	¿Ç'			
	Construct table driven predictive parser and parse the string 'ab".				
	OR				
Q6) a)	Consider the Grammar	[6]			
	Consider the Grammar E->E + E E-> E - E				
	E-> E - E				
	E-> id				
	Perform Shift Reduce parsing for given input string "id+id-id"				
b)	Consider the following grammar	[10]			
	S->(L)la				
	L->L,SIS				
	Construct SLR Parser and parse the input string (a,(a,a))				
[5560]-5	3				

```
Define and explain annotated parse tree for the given grammar
                                                                                      [8]
Q7) a)
                L \rightarrow E n
                E \rightarrow E1 + T
                E \rightarrow T
                T \rightarrow T1 * F
                F \rightarrow DIGIT
           Annotate the tree for 3*5+4 n
           Translate the following C code fragment into three address code (TAC).
     b)
           Assume integer size of 4 bytes;
                                                                                     [10]
                int sum = 0,i,j;
                int A[10][10], B[10][10], C[10][10], X[10];
                 i = 1;
                j=1;
                while (i<10 &&j<=20)
                            Sum += X[i];
                           C[i][i] = A[i][j] + B[i][j];
                                           OR
                                                                                      [8]
Q8) a) Design dependency graph for the following grammar
                E \rightarrow E+T/T
                 T \rightarrow T*F / F
                F \rightarrow id
           The expression given is: 5+8* 10
           Translate the following expression
                                                                                     [10]
     b)
                a[i] = b * c - b * d
           a)
                x = f(y + 1) + 2
           b)
           into Quadruples, Triple, Indirect Triple
```

[5560]-597

Q9)	a)	Writ	te short note on activation record.	[4]			
	b)	Exp	Explain following machine independent optimization techniques [8]				
		i)	Loop in variation.				
		ii)	Common sub-expression elimination.				
		iii)	Dead code elimination.				
		iv)	Strength reduction				
	c)	Con	npare machine dependent and independent optimization.	[4]			
			OR				
Q10 ,) a)		ain the TAC for the following code before and after applying mization techniques using.	g the [12]			
		i)	Removal of Loop Invariants				
		ii)	Elimination of common sub expressions				
		O)X	int X[10][10], Y[10][10]				
	6	× .	for(i= 1; i< = 10; i++)				
			X[i][2*j-1] = Y[i][2*j-1]				
	b)	Exp	lain Code generation issues.	[4]			
			5 kg. No. No. No. No. No. No. No. No. No. No				
[556	0]-5	97	5				