Tota	l No.	of Questions : 10] SEAT No. :
P29	99	[Total No. of Pages : 3
		[5669] 591
		T.E. (Information Technology)
		THEORY OF COMPUTATION
		(2015 Pattern) (Semester - I)
Tim	a · 21/2	[Max. Marks: 70
		ons to the candidates:
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8 and Q.9 or Q.10.
	<i>2)</i>	Near diagrams must be drawn wherever necessary.
	3)	Figures to the right indicate full marks.
	4)	Assume suitable data if necessary.
Q 1)	a)	Define the following terms with an example. [4]
	6	Alphabet.
	٧	ii) Regular Language.
	b)	Define formal definition of RE, also give the Regular expression for the
		following languages: [6]
		i) The Set a strings over the alphabet {a, b} starting with b and ending with odd number of a's or even numbers of b's.
		ii) The Set {10, 1010}
		iii) If L (r) = $\{ \in$, x,xx, xxx, xxxx, xxxxx) what is r?
		6° OD
<i>Q2)</i>	a)	Simplified the following grammar : [4] $S \rightarrow Ab, A \rightarrow a, B \rightarrow C b, C \rightarrow D, D \rightarrow E, E \rightarrow a$ Discuss application of RE and FA. [3] Compare Moore machine and Mealy Machine. [3]
<u>(</u> 22)	<i>a)</i>	S \rightarrow Ab, A \rightarrow a, B \rightarrow C b, C \rightarrow D, D \rightarrow E, E \rightarrow a
	1 \	STAD, A TU, B TC D, C TD, D TE, E TU
	b)	Discuss application of RE and FA. [3]
	c)	Compare Moore machine and Mealy Machine [3]
0.21	,	
Q3)	a)	Construct the FA from given RE 1* 00 (01)* [4]
	b)	Give CFG for following languages: [6]
		i) Matching parenthesis
		ii) All string without substring 'aaa'
		iii) $R = bba * bb + bb$

P.T.O.

OV

Q4) a) Convent following left linear grammar to right linear grammar stepwise. [6]

$$S \rightarrow A0 \mid B1$$

$$A \rightarrow C0 | A1 | 0$$

$$B \rightarrow B1 | A1 | 1$$

$$C \rightarrow 0 \mid A0$$

b) State and prove that Pumping Lemma with an application.

[4]

[8]

Design PDA to accept the language containing all odd length palindromes Q5)over $\Sigma = \{0,1\}$ by empty stack and final state. [8]

b) Design Post Machine that accept the following languages.

$$L = \{ a^n b^n c^n \mid n > = 0 \}$$

OR

Construct a PDA that accepts the language defined by the following *Q6*) grammar : [8]

$$S --> 0A \mid 1B \mid 0$$

$$A --> 0A | B$$

$$B \longrightarrow c \mid d$$

Here $N = \{S, A, B\}, T \neq \{0, 1, e, d\}$ and S is start symbol.

b) Construct PDA by final state that accepts the following language. Simulate for "aaaaa" 1

Design TM which compares two positive integers m & n and produces Q7)[12] output

Gt, if m > n; Lt, If m < n; and Eq, if m = n;

Simulate the working of the TM for the input i) m

b) Write a note on each of the following:

[6]

- OR On About 1 Recursively enumerable language. i)
- ii) Recursive language
- Recursive function. iii)

a) Construct a TM to compute the following function. (08)

f(a, b) = a - b where a > b

= 0 where a < b

Simulate the working of the TM for the input i) x = 2, y = 2. ii) x = 4, y = 2

[12]

[9]

9.28.20 And Andrew Andr

- b) Define TM. Explain its working. Give the types of TM & applications of the same. [6]
- Suppose that there is an NP-complete problem P that has a deterministic **Q9**) solution taking $O(n^{\log_2 n})$ time (here log n denotes log 2^n). What can you say about the running time of any other NP-complete problem Q?
 - b) Prove that PCP with two lists $x = (b, bab^3, ba)$ and $y = (b^3, ba, a)$ have a solution? [7]

OR

Show that PCP over $|\Sigma| \ge 2$ is unsolvable.

b) Find the running time for the Euclidean algorithm for evaluating GCD (a, b) where a, b are positive integers expressed in binary representation.[7]

[5669]-591