Total No. of	Questions	: 1	.0]
--------------	-----------	-----	-----

SEAT No.:

P1761

[Total No. of Pages: 3

[5460] - 591 T.E. (IT) THEORY OF COMPUTATION (2015 Pattern)

Time : 2½ *Hours*]

[Max. Marks:70]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary
- 3) Figures to the right, indicate full marks
- 4) Assume suitable data, if necessary
- Q1) a) Convert the NFA with ∈ moves, for the following Transition Diagram, into its equivalent DFA. [8]

b) State properties & limitations of FSM.

[2

OR

Q2) a) Find the regular expression for the language

[6

- i) Consisting of all strings of a's & b's without any combination of double letters.
- ii) over $\Sigma = \{a, b\}$ containing at least one 'a' & at least one 'b'.
- iii) Consisting of set of all strings that start with 'a' and do not have two consecutive 'b's.
- b) Construct Transition Graph for the following regular expression. [4]

$$r = 1* \cdot 0 \cdot 0 \cdot (0+1)*$$

Q 3)	a)	Write a context free language (CFL) for the following CFG.	[6]
		i) $S \rightarrow OSO A \in$	
		$A \rightarrow 1SO \in \mathcal{S}$	
		ii) $S \rightarrow a Sc A \in$	
		$A \rightarrow aAb \mid \in$	
	b)	Eliminate ∈ - productions from the given Grammar consisting of follow	ing
		productions	[4]
		$S \rightarrow a S a b S b \in$	
		OR	7
<i>Q4)</i>	a)	Convert the following grammar G to GNF	[8]
		$G = \{(A_1 A_2 A_3), (a, b), P, A_1\}$	
		Where P consists of the following productions:	
		$A_1 \rightarrow A_2 A_3$	
		$A_2 \rightarrow A_2 A_1 \mid b$	
		$A_2 \rightarrow A_3 A_1 \mid b$ $A_3 \rightarrow A_1 A_2 \mid a$	
	b)		[2]
	•)		[-]
Q5)	a)	Define PDA. Construct PDA that accepts the following language.	[8]
•	,	$L = \{a^n b^n / n > 0\}$. ,
		Simulate for $\omega = aaabb$	
	b)	Construct a PDA that accepts the following language.	[8]
		$L = \{X, aXa, bXb, aaXaa, abXba\}$	
		OR OR	
<i>Q6)</i>	a)	Construct PM that multiplies two unary numbers	4.03
		write simulation for	10]
		i) aa.a	
		ii) aaa.aaa	
	b)	Give difference between PDA & PM.	[6]
Q7)	<u>a)</u>	Design a TM that recognizes strings containing equal no. of 0's &	1 'c
<i>Q7</i>)	a)	_ /	1 S [9]
	b)	Design a TM that recognizes binary palindromes. Write simulation	
	٠,	any two input strings.	[9]

- **Q8)** a) Design TM that finds the Greatest Common Divisor (GCD) of two given numbers. Find GCD of 4 & 2. [12]
 - b) Write short note on types of TM.

[6]

Q9) a) Prove that.

PCP = {|p is an instance of the Post Correspondence problem with a match}. [10]

b) Write short note on p - class with examples.

[6]

OR

Q10) a) Prove that following are decidable languages.

[10]

- i) $A_{NFA} = \{ \langle B, \omega \rangle \mid B \text{ is an NFA that accepts input string } \omega \}$
- ii) $A_{REX} = \{ \langle R, \omega \rangle \mid R \text{ is a regular expression that generates string } \omega \}$
- b) Explain computational complexity with example.

[6]

As to the second of the second