Total	No.	of Questions: 10] SEAT No.:
P33	88	[Total No. of Pages : 3
		[5353] - 591
T.E. (IT)		
THEORY OF COMPUTATION		
(2015 Pattern)		
Time	: 21/2	Hours] [Max. Marks: 70
Instructions to the candidates:		
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
	<i>2) 3)</i>	Neat diagrams must be drawn wherever necessary. Figures to the right indicate full marks.
	4)	Assume suitable data if necessary.
Q1)	a)	Define pumping lemma. Prove that the language $L = \{a^n b^{n+1}/n > 0\}$ is
		non regular. [6]
	b)	Construct FSM for divisibility by 3 tester for binary number. [4]
		OR
Q 2)	a)	Construct the Mealy machine to accept strings ending with '00' or '11'
		over $\Sigma = \{0,1\}$. Convert Mealy Machine into equivalent Moore machine.
		[8]
	b)	If $L(r) = \{ \in x, xx, xxx, xxxx, xxxxx \}$ What is r ? [2]
Q3)	a)	Simplify the following grammar [5]
23)	u)	
		$S \rightarrow a/Xb/aYa$
		$X \rightarrow Y/\in$
		$Y \rightarrow b/X$
	b)	Write an equivalent left-linear grammar for the right-linear grammar which
		is defined as: [5]
		Write an equivalent left-linear grammar for the right-linear grammar which is defined as : [5] $S \rightarrow 0A/1B$ $A \rightarrow 0C/1A/0$ $B \rightarrow 1B/1A/1$ $C \rightarrow 0/0A$
		$A \rightarrow 0C/1A/0$
		$B \rightarrow 1B/1A/1$
		$C \rightarrow 0/0A$
		\nearrow

- Check whether or not the following grammar is ambiguous: if it is **Q4**) a) ambiguous, remove the ambiguity and write an equivalent unambiguous grammar $E \rightarrow E + E/E - E/E \times E/E/E/(E) | id$
 - Convert the given CFG $G = (\{s\}, \{a\}, p, s)$ into CNF. b) [4]

 $S \rightarrow aaaaaS/aaa$

Construct PDA to accept the strings containing equal no. of a's & b's **Q5**) a) over $\Sigma = \{a, b\}$ [8]

Write ID for

- i) abbaab.
- aabb. ii)
- Design a PM that checks if the given string contains well-formed b) parenthesis. [8]

Simulate for

(()())

Construct a PDA that accepts the language $L = \{a^n b^m a^n / m, n \ge 1\}$ **Q6)** a)

- , abbbaConstruct PDA for the following language $L = \left\{a^{2n} b^n / n \ge 1\right\}$

Q7) a) Design a TM which compares two positive integers m & n and produces output Gt if m > n; Lt if m < n; and Eq if m = n; [12]

Write simulation for the input

- i) m = 1, n = 2.
- ii) m = n = 2
- b) Write short note on UTM.

[6]

OR

Q8) a) Construct TM for the language $L = \{a^n b^n c^n \mid n > 0\}$.

[10]

- b) Design a TM to find the value of $log_2(n)$ where n is any binary number & a perfect power of 2. [8]
- **Q9)** a) Prove that following are decidable languages.

[10]

- i) $A_{CFG} = \{ \langle G, W \rangle | G \text{ is a CFG that generates string } W \}$.
- ii) $E_{CFG} = \{ \langle G, W \rangle | GisCFG \& L(G) = \phi \}.$
- b) Define the class P & Class NP problems with example.

[6]

OK

Q10) a) Prove that

18

 $PCP = \{\langle P \rangle | P \text{ is an instance of the post correspondence problem with a match}\}$

is undecidable

b) Explain Turing Reduciability with example.

[8]

