Total No.	of Questions : 6]	SEAT No. :	7
P5092		[Total No. of Pages :	:3
TE/Insem641			
T.E. (IT) (Semester-I)			
THEORY OF COMPUTATION			
(2015 Pattern)			
<i>Time</i> : 1 <i>H</i>		[Maximum Marks : 3	0
Instruction	ns to the candidates:		
	 Figures to the right indicate full marks. Attempt questions Q.1 or Q.2 Q.3 or Q.4 		
	3) Neat diagrams must be drawn wherever		
4) Assume suitable data if necessary.			
Q1) a)	Construct FA for the following Language L	[8]	3]
	W W is a binary word of length	00	
$L = \begin{cases} 4i, i > = 1 \text{ such that each consecutive} \\ \text{Block 4 bits contains at least 2 0's} \end{cases}$			
Block 4 bits contains at least 20's			
b)	Distinguish between NFA & DFA	[2	2]
	OR		0
Q2) a)	Construct Mealy machine for the following	Language [6	
	for input from Σ^* where $\Sigma = \{0, 1\}$	2	h. "
	if the input ends in 101 output is x,		
L =	if the input ends in 110 output is y,		
************************************	otherwise output z}		
	(otherwise output 2)		
b)	Define		4]
	i) Alphabetii) String	3 28	
	ii) String iii) Language		
	iv) Formal Language	Language [6	
		· · ·	

P.T.O

[4]

$$(1+011)^* = \in +1^* (011)^* (1^*(011^*)^*$$

b) Construct regular expression for the following FA using Arden's Theorem

[6]

OR

Q4) a) Write regular expression for

[4]

- i) Strings consisting of a's and b's without any combination of double letters over $\Sigma = \{a, b\}$
- ii) Strings that either contain all b's or else, there is an 'a' followed by some b's; the set also contain \in over $\Sigma = \{a, b\}$
- b) Construct DFA for following r.e.

46

$$r = (1(00)^* 1 + 010^*)^*$$
 using direct method

Q5) a) Consider the following CFG:

[4]

$$G = \{(S, A), (a, b), P, S\}$$

Where P consists of:

$$S \rightarrow aAs|a$$

 $A \rightarrow SbA|ss|ba$

Derive string 'aabbaa' using leftmost & right most derivation

TE/Insem. -641

b) Convert given CFG into GNF

- $S \rightarrow Bs | Aa$
- $A \rightarrow Bc$
- $B \rightarrow Ac$ where,
- $V = \{S, A, B\} & T = \{a, c\}$

OR

Q6) a) Eliminate the \in - productions from the Grammar G which is defined as:

- $S \rightarrow ABA$
- $A \rightarrow aA \in$
- $B \rightarrow bB \in$
- b) Write CFG for the following Languages

- i) $L = \left\{ a^j b^j c^k / i j + k \right\}$
- ii) $L = \left\{ a^{2n} \text{ bc/ } n \ge 1 \right\}$

. . .