Seat		I
No.	O, K	

[5559]-208

S.E. (IT) (II Semester) EXAMINATION, 2019 DATA STRUCTURE AND FILES (2015 PATTERN)

Time: 2 Hours

Maximum Marks: 50

- N.B. : (i) Answer four questions.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary
- 1. (a) If the values of A, B, C and D are 2, 3, 4 and 5 respectively, calculate the value of the following postfix expressions:
 - (i) AB * C D +
 - (ii) ABC + * D -

[6]

(b) Construct binary tree from the preorder and inorder traversal.[6] Preorder: J C B A D E F I G H

Inorder: A B C E D F J G I H

Or

- 2. (a) Convert the following expression from Infix to Postfix and Prefix.

 Make use of appropriate data structure:

 [6]

 2 * 3/ (2 1) + 5 * 3
 - (b) Traverse a given binary Tree in Inorder, Preorder and Postorder: [6]

3. (a) Draw the directed graph for the adjacency matrix representation given below: [6]

	A	В	\mathbf{C}	D	\mathbf{E}	F
A	0	3	4	0	2	1
В	0	0	2	0	0	3
C	0	0	0	2	6	1
D	2	6	1	0	1	2
E	0	0	0	0	0	3
\mathbf{F}	0	0	0	0	0	0

(b) Find the shortest path using Dijkstra algorithm between node A and node F: [6]

Or

- 4. (a) Define the following terms with respect to graph: [6]
 - (i) Path
 - (ii) Adjacent Vertices
 - (iii) Cycle
 - (iv) Loop
 - (v) Degree of vertex
 - (vi) Connected graph.
 - (b) Find minimum spanning tree using Kruskal's algorithm: [6]

[5559]-208

Create an AVL tree using the following data, show the balance **5.** (a)factor: [8]

14, 23, 7, 10, 33, 56, 80, 66, 70

Write an algorithm to traverse inorder threaded binary tree (*b*) in Inorder. [6]

Or

Construct heap out of the following data read from the 6. (a)Keyboard: [8]

23, 7, 92, 6, 12, 14, 40, 44, 20, 21

- (*b*) Compare AVL tree and Red-Black, tree with different parameters. [6]
- What is file? Explain different types of file organisations.[6] **7**.
 - Write C++ Pseudo code for delete operation on sequential file.[6] Or
- Explain prototype of the following function in C++ with 8. (a)[8] example:
 - seekg (i)
 - (ii)seekp
 - (iii)tellg
 - (iv)tellp
 - file. Differentiate sequential and index sequential file. (*b*)