[Total No. of Printed Pages—3

Seat	
No.	

[5668]-202

S.E. (I.T.) (Sem. I) EXAMINATION, 2019 COMPUTER ORGANIZATION AND ARCHITECTURE (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- 1. (a) A benchmark program is run on a 40 MHz processor. The executed program consists of 1,00,000 instruction executions, with the following instruction mix and clock cycle count.

Instruction Type	Instruction Count	Cycles Per Instruct
Integer Arithmetic	45000	1
Data Transfer	32000	2 2
Floating Point	15000	20
Control Transfer	8000	2

Determine the effective CPI, MIPS rate and execution time for this program. [6]

(b) What are addressing modes? State with example any three addressing modes used in the processors. [6]

P.T.O.

		X.O	
2.	(<i>a</i>)	Using non-restoring algorithm, divide the following unsign	ıed
		numbers:	[6]
		Dividend = 1101	
		Divisor = 0011)
	(b)	Draw and explain instruction cycle state diagram.	[6]
3.	(<i>a</i>)	Explain Hardwired control unit with suitable block diagram.	[6]
	(<i>b</i>)	A set associative cache consists of 64 lines divided into for	ur
		line sets. Find various field sizes in memory address. Giv	_' en
	(X)	that main memory contains 4 k blocks of 128 words each.	[7]
		Qr	
4.	(a)	What is TLB ? Comment on its need and access by process	sor
	(4)	in address translation process.	[6]
	(1.)		
	(b)	Explain single bus organization of CPU with neat diagram.	
5.	(a)	Explain with suitable block diagram, architecture of MI	PS
		processor.	[6]
	(b)	What are different types of Hazards in pipelined operation	ion
		of MIPS ? State their causes.	[6]
		Or	
6.	(a)	Explain events of Fetch and Execute Cycle.	[6]
	(<i>b</i>)	Explain code reordering with example to remove data hazar	rds
		in MIPS pipeline.	[6]

[5668]-202

7.	(a)	What is NUMA? Draw suitable diagram of NUMA and expl	ain
		briefly.	[6]
	(b)	Explain with suitable diagram simultaneous multi-threading. Or	[7]
8.	(a)	Draw block diagram of Intel Core i7 organization a	\mathbf{nd}
		explain.	[6]
	(b)	Write a short note on cluster configuration,	[7]
		City of the	