Seat	
No.	

[5352]-574

S.E. (I.T.) (I Sem.) EXAMINATION, 2018 FUNDAMENTALS OF DATA STRUCTURE (2015 PATTERN)

				(2)	J10 1	77111	11011)			
Ti	me :	Two	Hours					Maximum	Marks :	50
N.	<i>B.</i> :-	- (<i>i</i>)	Answer	four qu	uestion	ıs.				
		(ii)	Neat di	agrams	must	be d	lrawn	wherever n	ecessary.	
		(iii)	Figures	to the	right	indic	ate fu	ll marks.		
		(iv)	Assume	suitabl	e data	i, if	necessa	ary.		
1.	(a)	Expla	in working	of differen	t logical	operato	ors in C w	i <mark>th examples.</mark>		[3]
	(<i>b</i>)	Expla	in use of "b	reak" and	"continue	e" keyv	vords in (C with suitable e	examples.	[3]
	(c)	Expla function		ent modes	of openi		and bina	ry files in C usin	ng fopen()	[6]
						OR				
2.	(a)	int int pr	is ouput of aaray[]={4 t *p=array; intf("%d", ' intf("%d", '	5,67,89}; *(p++));	code:					[2]
	(b)		is purpose ure? Explain				possible	to define struc	ture into the	[4]
	(c)		are d <mark>i</mark> fferen e efficiently					function? Writ	e how array	[6]
3.	(a)	Expla	in the follow	wing terms	i)mall	oc()	ii)calloc	() iii)realloc()	iv) free()	[6]
	(<i>b</i>)	What	is the impor	rtance of p	ivot elem	nents in	the quic	k sort method?		[2]
,	(c)		pseudo C ving data :			sort?	Show its	working pass	by pass for	[4]

4.	(a)	Explain the following terms					
		i) Big Oh notation ii) Omega Notation iii) Theta Notation					
	(b) (c)	What is Persistent and Ephemeral data structure? Write pseudo code for non-recursive binary search function and comment on its time complexity in best, average and worst cases.	[3] s [6]				
5.	(a)	Write address calculation for elements of one dimensional array.	[2]				
	(<i>b</i>)	Explain sequential memory organization with example.	[4]				
	(c)	Write an algorithm to add two sorted polynomial in a single variable. Analyze its time complexity. OR	; [7]				
6.	(a)	Explain the two dimensional arrays in details with column and row major implementation and address calculation in both the cases.	[6]				
	(<i>b</i>)	What is sparse matrix? Explain how it is represented. Write C pseudo code for addition of two sparse matrices. What is its time complexity?	· [7]				
7.	(a)	Explain concept of generalized linked list with example?	[4]				
	(b)	Write advantages of circular linked list over linear linked list.	[2]				
	(c)	What is Doubly Linked List? Write C code to delete a node from DLL.at following positions:	t [7]				
		i) At the beginning					
		ii) In the middle					
		iii) At the end					

[6]

[7]

- 8. (a) Compare linked list with arrays with reference to the following aspects:
 - i) Accessing any element randomly
 - ii) Insertion and deletion of an element
 - iii) Utilization of memory
 - (b) What is Singly Linked List (SLL)? Write C pseudo code for performing following operations on SLL:
 - i) Insert element at any position
 - ii) Reverse the list without using additional data structure

3