Total No. of Questions—8]

Total No. of Printed Pages—3

Seat	
No.	8

[5152]-574

S.E. (I.T.) (I Sem.) EXAMINATION, 2017

		3.2. (2.2.) (2 30111) 2122(211) 2111	
		FUNDAMENTALS OF DATA STRUCTURES	
		(2015 PATTERN)	
Time	e : T	wo Hours Maximum Marks:	50
<i>N.B.</i>	:	(i) Answer four questions.	
		(ii) Neat diagrams must be drawn wherever necessary.	•
		(iii) Figures to the right indicate full marks.	
	X	(iv) Assume suitable data, if necessary.	
1.	(<i>a</i>)	What is the use of void data type?	[2]
	(<i>b</i>)	What is Macro? Compare it with function.	[4]
	(c)	Explain the use of pointer to array of structure with suita	ıble
		example.	[2]
	(<i>d</i>)	Explain any four functions used for file handling.	[4]
		Or	
2.	(a)	Explain different storage classes in C.	[4]
	(<i>b</i>)	What is pointer? Explain pointer to a function with suita	ıble
		example.	[5]
	(c)	Differentiate between binary and text file.	[3]
3.	(a)	Explain static and dynamic data structures with suita	ble

[3] examples.

P.T.O.

	<i>(b)</i>	What is space complexity of an algorithm? Explain its importa	nce
		with example.	[3]
	(c)	Explain the following terms:	[6]
		(i) Internal sorting	
		(ii) External sorting	
		(iii) Sort stability.	
		Or	
4.	(<i>a</i>)	Explain linear data structure with suitable example.	[3]
	(<i>b</i>)	What are different asymptotic notations?	[3]
	(c)	Write pseudo C code for insertion sort. Show all the pas	sses
		to sort the values in ascending order using insertion sort, val	ues
		are: 5, 15, 3, 7, 2.	[6]
5.	(a)	Write a pseudo C algorithm for simple transpose of spa	arse
		matrix. What is it time complexity?	[5]
	(<i>b</i>)	Explain row and column major storage representation of	two
		dimensional array.	[6]
	(c)	Explain stack as Abstract Data Type (ADT).	[2]
		Or Si.	
6.	(a)	Explain sequential memory organization using suitable d	lata
		structure.	[6]
	(<i>b</i>)	Write an algorithm to add two sorted polynomial in a sir	ngle
		variable. Analyze its time complexity.	[7]

[5152]-574

7. (a) What is generalized linked list? Give graphical representation of the generalized list: [4]

A = (1, 2, (3, (4, 5)), 6)

- (b) Compare linear and circular linked list. [3]
- (c) Write pseudo C code to delete a node from doubly linked list (DLL). [6]

Or

- 8. (a) Compare array and link list [3]
 - (b) Write pseudo C code to insert a node at start and end of singly linked list (SLL). [6]
 - (c) Give practical applications of circular linked list. [4]

A Stranger of the Stranger of