Total No. of Questions: 4]	SEAT No.:
P-5368	[Total No. of Pages : 2
	[6185]-51
F.E.	(Common) (Insem)
No.	NEERING PHYSICS
	(Semester - I) (107002)
Time: 1 Hour]	[Max. Marks: 30
Instructions to the candidates:	.6"
1) Solve Q1 or Q2 and s	olve Q3 or Q4.
2) Neat diagram must d	rawn wherever necessary.
3) Figures to the right	ndicates full marks.
4) Assume Suitable date	, if necessary.
S. X.	
_	or path difference in reflected system for thin film
of uniform thickness	s and obtain condition for maxima and minima.
	[6]
b) The resultant amplit	ude of wave when monochromatic light is diffracted
from a single slit	is $\mathbf{E}_{\theta} = \mathbf{E}_{m} \left(\frac{\sin \alpha}{\alpha} \right)$ starting from this obtain the
condition of princip	al maxima and minima. [5]

c) How should the polarizer and analyzer be oriented so that intensity of transmitted light becomes to i) 0.50 ii) 0.25 times the maximum intensity? [4]

OR

- Q2) a) What is double refraction? Explain Huygen's theory of double refraction. [6]
 - b) Explain the use of thin film as Antireflection coating along with equation of thickness of coating. [5]
 - In a plane transmission grating, the angle of diffraction for the second order principal maximum for wavelength 5×10^{-5} cm is 30°. Calculate the number of lines / cm of the grating surface. [4]

<i>Q3</i>)	a)	Explain with neat labelled diagram construction and working of a carbon dioxide laser. [6]
	b)	What is optic fibre? Give the difference between step Index and Graded Index optic fibre (any 2). [5]
	c)	Calculate the numerical aperture and acceptance angle of an optical fibre having $n_1 = 1.49$ and $n_2 = 1.44$. [4]
Q4)	a)	OR Explain the process of fiber optics communication system with neat block diagram. State any two advantages of fiber optics communication. [6]
	b)	What is Holography? Explain the process of hologram recording. [5]
	c)	Describe the terms in laser: [4]
	6	Stimulated emission
		ii) Pumping
3	くくつ	A SP. A. S.
[618	5]-51	2