Total No.	of Questions	: 9]
-----------	--------------	------

P-3919

SEAT No.	:	

[Total No. of Pages: 4

[6001]-4002

ENGINEERING PHYSICS

(2019 Pattern) (Semester - II) (Credit System) (107002)

Time : 2½ *Hours*]

[Max. Marks : 70]

Instructions to the candidates:

- 1) Question No. 1 is compulsory.
- Q.No. 2 to Q.No. 9 carry equal marks. *2*)
- 3) Figures to the right indicate full marks.
- Assume suitable data, if necessary.
- Use of electronic calculator is allowed.

Physical Constants:

- Mass of electron *1*)
- Charge on electron *2*)
- *3*) Planek's constant

Q1) Write correct option of given questions with Answer. (1 mark each):

According to Dr. Broglies hypothesis, the wavelength $\lambda = \frac{h}{m}$ is applicable i)

for

- Photons a)
- Matter particles b)
- Either matter particles or photons c)
- Both matter particles and photons d)
- According to Heisenberg's uncertainty principle
 - a) $\Delta x.\Delta p \ge \frac{h}{2n}$ c) $\Delta x.\Delta p \ge \frac{h}{6n}$

111)		schrodinger's time independer pendent of time.	nteq	uation of a particle is
	a)	Kinetic energy	b)	Potential energy
	c)	Total energy	d)	Wave function
iv)	Fern	ni level for a metal or conducto	or is h	ighest energy level occupied by
	elec	trons at		,0
	a)	0°C	b)	0°F
	c)	0°K	d)	None of the above
v)	Hall	effect is true for		
	a) _	Metals only		07 a
	b)	Semiconductors only		330
	c)	For N-type semiconductors of	nly	ži ^C
	d) (Both metal and semiconductor	îs 💮	
vi)	The	magnetic materials exhibit the	e proj	perty of magnetisation because
6	×01 –		7	
	a)	Orbital motion of electrons	ر (وار	Spin of electrons
•••	c)	Spin of nucleus	d)/	All of the above
V11)		aperconductor is a perfect		naterial.
	a)	Insulator	b)	Semiconductor
•••	c)	Dielectric	d)	Diamagnetic
V111)		neling of Cooper pairs througerconductors is called	gh an	insulating layer between two
	a)	Josephson effect	b)	Onnes effect
	c)	Meissner effect	d)	Kerr effect
ix)	With	n increase in size of nanopartic	les its	s hardness O
	a)	Increases	b)	Decreases
	c)	Remains same	d)	Difficult to predict
x)			e phy	sical and chemical properties of
9	sam			
	a)	Changes	b)	Do not changes
	c)	Depends on temp	d)	Does not depend on temp
			OX)°
[6001]-	400	2	9.	

Q2)	a)	Deduce Schrodinger's time independent wave equation. [6]
	b)	State and explain Heisenberg's uncertainty principle using the except of small and large wave packet. [5]
	c)	Calculate the energy difference between the ground state and first excited state of an electron in the rigid box of length 1A°. [4] OR
Q 3)	a)	State De Broglie's hypothesis. Derive an expression for De Broglies wavelength of an eletron accelerated by a potential difference of 'V'.[6]
	b)	Define wave function. Write the conditions of well behaved wave function. [5]
	c)	The uncertainty in the location of a particle is equal to its De Broglie wavelength. Show that the uncertainty in the velocity to a particle is equal to the particle velocity itself. [4]
Q4)	a)	With the help of bond theory of solids explain the classification of solids into conductors, semiconductors and insulators. [6]
	b)	What are solar cells? Draw I-V characteristics of solar cells and define the terms i) Short circuit current and ii) Open circuit voltage. [5]
	c)	The Hall coefficient of a specimen of a doped silicon is found to be $3.66 \times 10^{-4} \mathrm{m}^3/\mathrm{c}$. The resistivity of the specimen is $1 \times 10^{-2} \Omega\mathrm{m}$. Determine the mobility of the charge carriers.
		OR OR
Q 5)	a)	Explain the Hall effect with a neat labelled diagram. Derive an expression for Hall voltage. [6]
	b)	Define Fermi level in semiconductors. For a P-N junction diode draw
,<		energy band picture showing the position of Fermi level in i) Zero bias and ii) Forward bias. [5]
<u>し</u>	c)	Calculate the number of donors atoms which must be added to an intrinsic semiconductors to obtain the resistivity of $10^{-6} \Omega \text{cm}$. (Given mobility of electrons = $1000 \text{ cm}^2/\text{V}$ sec.) [4]

Qo	a)	Differentiate between diamagnetism, paramagnetism and ferromagnetism	n.
b)		(Any two points)	6]
		Define:	5]
		i) Magnetic permeability and	
		ii) Magnetic susceptibility	
		Obtain the relation between them.	
	c)	The critical magnetic field of niobium is 1×10^5 A/m at 8° K and 2×1	0^{5}
		A/m at 0°K. Calculate the critical temperature of the element.	4]
		OR OR	
Q 7)	a)	Explain artificial magnetic field in brief. Distinguish between Type-I	&
			6]
	b)		re
			5]
	c)		4]
		i) Magnetic field strength (H)	
		ii) Magnetic induction (B)	
	0	Magnetisation (M)	
		iv) Relation permeability (μ _r)	
		QR V	
Q 8)	a)	What is echosounding technique? Using this technique explain no	n
		destructive testing for the measurement of thickness of a metal she	et
			6]
	b)	What is Non Destructive Testing (NDT)? Distinguish between No	
			5)
	c)	Write any four applications of nanotechnology in the field of automobil	
			4]
		OR OR	
Q9)	a)		6]
	b)	What are nanoparticles? What is the effect of quantum confinement of	
	1		5]
1	c)	An ultrasonic pulse is sent through a copper block. The echo pulse	
	K	received after 4 µs. If velocity of ultrasonic in copper is 5000 m/s, calcula the thickness of copper block. If the reflection pulse recorded aft	
	1,	/	4]
4	1	Lizza po Ironi die top what is the location of haws.	-1
		$\nabla\nabla\nabla\nabla$	
		• • • •	