Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	

[5558]-108

F.E. EXAMINATION, 2019

ENGINEERING MATHEMATICS—II

(2015 **PATTERN**)

Time: Three Hours

Maximum Marks: 60

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- **1.** (a) Solve the following differential equations:

(i)
$$ye^{x/y} dx = (xe^{x/y} + y^2) dy$$
 [4]

(ii)
$$(1 + xy^2) dx + (1 + x^2y) dy = 0.$$
 [4]

(b) A particle of mass m is projected vertically upward with velocity V_0 . Assuming that the air resistance is k times the velocity, show that particle will reach maximum height in time $\frac{m}{k}$ log

$$\left(1 + \frac{kv_0}{mg}\right) . ag{4}$$

2. (a) Solve:
$$xy - \frac{dy}{dx} = y^3 e^{-x^2}$$
. [4]

- (b) (i) A body originally at 80°C cools to 60°C in 20 minutes, the temperature of air being 40°C, what will be the temperature of the body after 40 minutes. [4]
 - (ii) A circuit consists of resistance R ohms and condenser of ε farads connected to a constant e.m.f. ε volts. If q/c is the voltage of condenser at time t after closing the circuit, show that :

$$q/c = \varepsilon(1 - e^{-t/RC}).$$

- 3. (a) Find half-range cosine series for $f(x) = x^2$, $0 \le x \le \pi$. [5]
 - (b) Evaluate: $\int_{0}^{\infty} \frac{dx}{3^{4x^2}}$ [3]
 - (c) Trace the curve (any one): [4]
 - $(i) y^2(a^2 x^2) = a^3x$
 - (ii) $r = a \cos 2\theta$.

Or

4. (a) Evaluate :
$$\int_{0}^{2a} x^{7/2} (2a - x)^{-1/2} dx.$$
 [4]

$$\int_{0}^{\infty} \frac{e^{-x} - e^{-ax}}{x \sec x} dx = \frac{1}{2} \log \left(\frac{a^{2} + 1}{2} \right), \ a > 0.$$

(c) Find the perimeter of cardioide $r = a(1 + \cos \theta)$.	[4]
--	-----

- 5. (a) Find the centre and radius of the circle $x^2 + y^2 + z^2 2x + 4y + 2z 6 = 0$, x + 2y + 2z 4 = 0. [5]
 - (b) Find the equation of right circular cone with vertex at (0, 0, 2), direction ratios of the generator are 0, 3, -2 and the axis is z-axis. [4]
 - (c) Find the equation of right circular cylinder of radius 'a', whose axis passes through the origin and makes equal angles with the coordinates axes. [4]

Or

- 6. (a) Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 4$, z = 0 and cutting the sphere $x^2 + y^2 + z^2 + 10y 4z 8 = 0$ orthogonally. [5]
 - (b) Find the equation of right circular cone whose vertex is at (0, 0, 0), semi-vertical angle $\frac{\pi}{4}$ and axis along the line x = -2y = z. [4]
 - (c) Find the equation of right circular cylinder of radius 2 whose axis is the line: [4]

$$\frac{x-1}{2} = \frac{y}{3} = \frac{z-3}{1}$$
.

7. Attempt any *two* of the following:

(a) Evaluate:
$$\int_0^1 \int_0^{\sqrt{1+x^2}} \frac{dx \, dy}{1+x^2+y^2}$$
. [6]

(b) Evaluate:
$$\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$$
. [7]

(c) Find the C.G. of one loop of $r = a \sin 2\theta$.

Or

- **8.** Attempt any *two* of the following:
 - (a) Find the area bounded by the parabola $y = x^2$ and the line y = x.
 - (b) Find the volume of the paraboloid $x^2 + y^2 = 4z$ cut-off by the plane z = 4. [7]
 - (c) Find the moment of inertia of the portion of the parabola $y^2 = 4ax$, bounded by the x-axis and the latus rectum, about X-axis if density at each point varies as the cube of the abscissa.