Total	No.	of	Questions	:	8]
--------------	-----	----	-----------	---	----

SEAT No. :

P4396

[Total No. of Pages: 3

[5251]-1008

F.E.

ENGINEERING MATHEMATICS - II (2015 Pattern) (Credit System)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8,
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of electronic non-programmable calculator is allowed.
- 5) Assume suitable data, if necessary.
- Q1) a) Solve the following differential equations: [8]

i)
$$(1 + xy) y dx + (1-xy)x dy = 0$$

ii)
$$\frac{dy}{dx} = \frac{x - y + 3}{2x - 2y + 5}$$

b) A body of mass m falling from rest is subjected to the force of gravity and an air resistance proportional to the square of the velocity (Kv^2) . If it falls through distance 'x' and possesses a velocity 'v' at that instant,

prove that
$$\frac{2Kx}{m} = \log\left(\frac{a^2}{a^2 - v^2}\right)$$
, where mg = Ka². [4]

OR

Q2) a) Solve:
$$(1+y^2) + (x-e^{-\tan^{-1}y})\frac{dy}{dx} = 0$$
 [4]

- b) Solve the following: [8]
 - If the temperature of the body drops from 100°C to 60°C in one minute when the temperature of the surrounding is 20°C, what will be the temperature of body at the end of third minute.

ii) A constant electromotive force E volts is applied to a circuit containing a constant resistance R ohms in a series and a constant inductance L henries. If the initial current is zero, show that the current builts up to half its theoretical maximum in $\frac{L}{R} \log 2$.

Q3) a) Find half range cosine series for
$$f(x) = \sin^2 x$$
, $0 < x < \pi$ [5]

b) Evaluate
$$\int_{0}^{\infty} \frac{dx}{1+x^4}$$
. [3]

- i) $v^2(a-x) = x^3$
- ii) $x = a(t + \sin t), y = a(1 \cos t)$

OR

Q4) a) Evaluate

$$\int_{0}^{2a} x\sqrt{2ax-x^2} \, dx \,. \tag{4}$$

b) Prove that

$$\int_{0}^{\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \log \frac{b}{a}, \ a > 0, \ b > 0.$$
 [4]

c) Find the arc length of the curve $x = e^{\theta}\cos\theta$, $y = e^{\theta}\sin\theta$ from $\theta = 0$ to

$$\theta = \frac{\pi}{2}.$$
 [4]

- **Q5)** a) Find the centre and radius of the circle which is the intersection of the sphere $x^2 + y^2 + z^2 2x + 4y + 2z 6 = 0$ & the plane x + 2y + 2z 4 = 0.
 - b) Obtain the equation of a right circular cone which passes through the point (2, 1, 3) which the vertex (1, 1, 2) and axis parallel to

$$\frac{x-2}{2} = \frac{y-1}{-4} = \frac{z+2}{3}.$$
 [4]

c) Obtain the equation of a right circular cylinder of radius 5 and axis the

line
$$\frac{(x-2)}{2} = \frac{(y-3)}{1} = \frac{(z+1)}{1}$$
. [4]

- **Q6)** a) Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$; z = 0 and the point (α, β, γ) .
 - b) Find the equation of right circular cone whose vertex is (1, -1, 2), axis the line $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{-2}$ and semi-vertical angle 45°. [4]
 - c) Find the equation of the right circular cylinder whose axis is $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z}{3}$ and which passes through the point (0, 0, 3). [4]
- **Q7)** Attempt any two of the following:
 - a) Evaluate

$$\int_0^1 \int_0^{\sqrt{1-y^2}} \frac{\cos^{-1} x \, dx \, dy}{\sqrt{(1-x^2-y^2)(1-x^2)}} \,.$$
 [6]

b) Evaluate

$$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) \, dx \, dy \, dz \, . \tag{7}$$

c) Find the moment of inertia of the portion of the parabola $y^2 = 4ax$ bounded by x - axis and latus rectum, about x axis, if density at each point varies as the cube of the abscissa.

OR

- **Q8)** Attempt any two of the following:
 - a) Find the area outside the circle $r = a \sin\theta$ and outside the cardioide $r = a (1 \cos\theta)$. [6]
 - b) Find the volume of the region enclosed by the cone $z = \sqrt{x^2 + y^2}$ and paraboloid $z = x^2 + y^2$. [7]
 - c) Find the centroid of the one loop of the curve $r = a \sin 2\theta$. [6]

* * *