Total No.	of Questions	:	8]	
-----------	--------------	---	----	--

SEAT No. :	
------------	--

[Total No. of Pages: 4

P3663

[6001]-4905

F.E. (All Branches)

BASIC ELECTRICAL ENGINEERING (2019 Credit Pattern) (Semester - I/II) (103004)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- Solve Q.1 or Q.2, Q.5 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- Use of non-programable calculator is allowed. *5*)
- **Q1)** a) Define impedance. Draw the impedance triangle for R-L & R-C series circuit.
 - b) Obtain the expression for current and power, when voltage $v = V_m$ sin ot is applied across purely inductive circuit.
 - The series circuit having resistance 10 Ω , inductance 0.1 H and c) capacitance 150 µF is connected to 1-phase, 200 V, 50 Hz AC supply, Calculate -[8]
 - i) Inductive reactance X
 - ii) Capacitive reactance
 - iii) Net reactance
 - iv) Impedance Z
 - v) Current drawn by the circuit
 - vi) Power factor
 - vii) Active power P
 - viii) Reactive power Q.

If 200 V, 50 Hz supply is applied across the resistance of 10 Ω , find **Q2)** a) equation for voltage & current. [4]

P.T.O.

OR

	b)	Derive the expression for power, when voltage $v = Vm \sin \omega t$ is applied across R-L series circuit. [6]
	c)	The series circuit having resistance 10 Ω and capacitance 150 μF draws a current of 9.4 A from 1-phase, 50 Hz AC supply. Calculate -
		i) Capacitive reactance
		ii) impedance
		iii) power factor
		iv) supply voltage
		v) Active power and
		vi) reactive power. [8]
Q3)	a)	Define
	٩	i) Balanced load
		ii) Unbalanced load and
		iii) Phase sequence. [3]
	b)	Derive the EMF equation of single phase transformer. [6]
	c)	Derive the relation between i) phase voltage and line voltage ii) phase current and line current in case of balanced STAR connected 3-ph
		inductive load. Assume phase sequence RYB. Draw the circuit diagram & necessary phasor diagram. [8]
		OR OR
Q4)	a)	Define the voltage regulation and efficiency of transformer along with formula. [3]
	b)	The maximum flux density in core of a 250/1000 V, 50 Hz, 1-ph transformer is 1.2 T. If EMF/turn is 10 V, calculate i) Primary & secondary
		number of turns ii) area of cross section of core. [6]
		A. V.

- Three identical impedances each of Ω are connected in star across 3-ph, 400 V, 50 Hz ac supply. Determine. [8]
 - i) phase voltage
 - ii) phase current and line current
 - iii) power factor, 3-ph active, reactive and apparent power
- Q5) a) State and explain KCL & KVL

[4]

b) Calculate the current flowing through 4 Ω (AB) for the circuit shown in fig 5b, using Kirchhoff's Laws. All resistances are in Ω [6]

c) Derive the equations to convert Delta connected resistive circuit into equivalent Star circuit. [8]

OR

Q6) a) Explain the practical current source by means of

14

- i) Symbol of representation
- ii) Value of internal resistance
- iii) Graphs between V and I
- b) Calculate the current flowing through 4 Ω (PQ) for the circuit shown in fig 6b, using Superposition Theorem. All resistances are in Ω [6]

[6001]-4005

fig 6b, using Thevenin's Theorem. [8] Define resistance of the material & state factors on which it depends.[3] **Q7)** a) Explain construction and working principle of Lithium ion battery. b) Derive an expression for insulation resistance of a single core cable with c) the necessary diagram. [8] OR **Q8)** a) State the material used for positive plate, negative plate & electrolyte for lead acid battery. [3] The current flowing at the instant of switching 240 V, 40 Watt lamp is 2 b) A. The TCR of tungsten filament is 0.0055 per degree Celsius at 20°C. Determine. i) temperature of filament of the lamp ii) working current If α_1 and α_2 are the RTC of a conducting material at t_1^0 C and t_2^0 C c) respectively prove that & hence, obtain P. Ar. J. C. Proposition of the $\alpha_t = \alpha_0 / (1 + \alpha_0 t)$ [6001]-4005

Calculate the current flowing through 4 Ω (PQ) for the circuit shown in

c)