Total No.	of Questions	:	8]
-----------	--------------	---	----

SEAT No.:	
-----------	--

P3366

[Total No. of Pages: 3

[5353] > 557

T.E. (E & TC)

INFORMATION THEORY, CODING AND COMMUNICA-TION NETWORKS

(2015 Pattern)

Time: 2½ Hours

[Max. Marks: 70

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data, if necessary.
- Q1) a) A source emits 1000 symbols per second from a range of 5 symbols, with probabilities $\left[\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}\right]$. Find entropy and information rate.
 - b) For a systematic (6,3) LBC, the parity matrix is given by [7]

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

- i) Find all possible code vectors
- ii) Find error detecting & correcting capabilities.
- Obtain generator matrix and parity check matrix for (7,4) cyclic code using generator polynomial $g(x) = x^3 + x + 1$ [7]

OR

Q2) a) What is mutual information? Calculate all the entropies & mutual information for the channel with channel matrix given as P[y/x] = [0.9,0.1,0;0,0.8,0.2;0,0.3,0.7] [7]

Given
$$P(x_1) = 0.3$$
 and $P(x_2) = 0.25$

$$P(x_2) = 0.45$$

	b)	State & Explain [6]			
		i) Shannon's channel coding theorem			
		ii) Shannon's Information capacity theorem			
	c)	Explain the cyclic property of cyclic code. Generate a systematic (7,4) cyclic code for the messages [7]			
		i) 1010			
		ii) 1000			
Q3)	a)	For a 1/3 rate convolutional encoder using three generators [10]			
		$g_1 = [1 \cap 0 0]$			
		$g_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$			
		$g_3 = [1 \ 1 \ 1]$			
		i) Sketch the encoder configuration.			
		ii) Draw state and Terllies diagram			
		iii) Find output code sequence for the input sequence 10110			
	b)	Find the generator polynomial for the BCH code with block length $n = 15$, for error correcting capability $tc = 2$.			
		Use primitive polynomial $p(x) = x^4 + x + 1$, over GF (2 ⁴) [8]			
		OR			
Q4)	a)	Design (7,3) RS double error correcting code. Use primitive polynomial over GF (2^3), $x^3 + x + 1$.			
		Find systematic RS code for the message $\{\alpha, \alpha^3, \alpha^5\}$ [10]			
	b)	Define the following terms related to convolutional code with example			
		i) Constraint length			
		ii) Constraint length iii) Free length			
		iii) Free length			
		iv) Coding gain [8]			

Q 5)	a)	Draw & Explain OSI network model. What is peer to peer process? [8	}]
	b)	What is network? Explain different types of network topologies. [8	3]
		OR	
Q6)	a)	Draw & explain TCP/IP reference model. Explain functionality of eac layer.	h 3]
	b)	Compare coaxial cable, Twisted pair cable and fibre optic cable.	}]
Q7)	a)	Draw the HDLC frame format. Explain the control field used in HDLC for different frame types.	
	b)	Explain functions of data link layor. [8	8]
		OR	
Q8)	a)	List different framing methods. Explain character stuffing and bit stuffin in DLL [8]	g 3]
	b)	What is ARQ? Explain Go back N and selective repeat ARQ protocols [8]	3]