Total No. of Questions : 6]

P34

SEAT No. :

[Total No. of Pages : 2

Oct./TE/Insem.-148 T.E. (Electronics and Telecommunication) ELECTROMAGNETICS

(2015 Pattern) (Semester - I) (304183)

Time : 1 Hour]

b)

Instructions to the canaidates:

[Max. Marks : 30

- 1) Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary.
- **Q1**) a) State Gauss Law. Derive an expression for electric field intensity \overline{E} at point P due to point charge using Gauss Daw. [6]
 - b) Derive relationship between electric field intensity and electric potential.[4]
- Q2) a) Determine total electric field intensity \overline{E} at origin due to following charge distributions present in free space. [6]
 - i) Point charge of 12 nc at (-2, 0, 6).
 - ii) Uniform surface charge density 0.3 nc/m² at z

State physical significance of gradient, divergance and curl. [4]

- (Q3) a) Derive the expression for energy density in static electric field. [6]
 - b) Explain the concept at polarization in dielectrics. [4]

OR

P.T.O.

- Q4) a) Derive the boundary conditions for static electric field at the interface of dielectric and conductor. [6]
 - b) Determine the capacitance of capacitor as shown in figure, if $E_{r_1} = 4$,

[4]

[4]

- Q5) a) A current element Idi is located in xy plane in the form of circular ring. Determine the magnetic field intensity $\overline{4}$ at point (0, 0, h). Consider centre at ring at origin. [5]
 - b) A current distribution gives rise to the vector magnetic potential $\overline{A} = x^2 y$ $\hat{a}_x + y^2 x \, \hat{a}y - 4xyz \, \hat{a}_z$ ub/m². Calculate - [5]
 - i) \bar{B} at (-1, 2, 5)
 - ii) The flux through the surface defined by $z = 1, 0 \le x \le 1, -1 \le y \le 4$.

OR

- Q6) a) State and explain Ampere's circuit law.
 - b) The region x < 0 is medium 1 with $\mu_{r_1} = 4.5$ and $\overline{H_1} = 4\hat{a}_x + 3\hat{a}_y 6\hat{a}_z$ A/m. The region x > 0 is medium 2 with $\mu_{r_2} = 6$. Find $\overline{H_2}$ in medium 2 and angle made by $\overline{H_2}$ with normal to interface. [6]

TE/Insem.-148