Total No.	\mathbf{of}	Questions	:	8]
-----------	---------------	-----------	---	----

SEAT No. :	
------------	--

P2502

[Total No. of Pages: 3

[5253]-524

T.E. (E & TC)

ELECTROMAGNETICS

(2015 Pattern) (Semester - I)

Time: 2½ Hours]

[Max. Marks: 70

Instructions to the candidates:

- 1) Answers Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.
- Q1) a) Derive an expression for electric field intensity \overline{E} at a point ρ due to infinite line charge with uniform charge density ρ_{I} . [6]
 - b) State significance of poisson's and laplace's equations. Derive the expressions for the same [6]
 - c) In cylindrical co-ordinates a magnetic field is given by

$$\overline{H} = (2\rho - \rho^2)\hat{a}_{\phi}$$
 A/m for $0 \le \rho \le 1$ m.

- i) Determine the current density as a function of ρ within the cylinder.
- ii) Determine total current passing through surface Z = 0, $0 \le \rho \le 1$ in \hat{a}_z direction. [8]

OR

- **Q2)** a) If $\bar{D} = (2y^2 + z)\hat{a}_x + 4xy\hat{a}_g + x\hat{a}_z$ c/m². Find
 - i) Volume charge density at (-1, 0, 3)
 - ii) The flux through the cube defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
 - iii) The total charge enclosed by the cube

[6]

- b) Derive an expression for capacitance of parallel plate capacitor. [6]
- c) Derive boundary condition for the interface between two magnetic media of different permeabilities. [8]

Q3)	a)	State poynting theorem. State significance of poynting vector. Derive an expression for time average poynting vector [8]
	b)	In free space $\overline{E} = 20$. $\cos(wt - 50x)\hat{a}_y$ v/m calculate
		i) $\bar{\jmath}_d$ ii) \bar{H} iii) w OR
<i>Q4</i>)	a)	State Maxwell's equations in point and integral form for [8]
2 /	,	i) Static electric and steady magnetic field.
		ii) Time varging field.
	b)	State Faraday's law. Explain the terms transformer emf and motional emf.[8]
Q5)	a)	State primary and secondary constants of transmission line. Derive relationship between primary and secondary constants of transmission line[8]
	b)	The characteristic impedance of the uniform transmission line is 2040Ω at a frequency of 800 Hz. At this frequency the propagation constant is
		$0.054~ \boxed{87.9^{\circ}}$. Determine R, L, G, C, V and λ . [10]
Q6)	a)	What is meant by dissipationless line? Derive an expression for input impedance of dissipationless line. [8]
	b)	A lossless transmission line with $Z_0 = 50\Omega$ is 30m long and operates at 2MHz. The line is terminated with a load $Z_L = 60 + j40\Omega$. If $u = 0.6$ C on the line, using Smith chart find
		i) Reflection coefficient
		ii) Standing wave ratio
		the line, using Smith chart find i) Reflection coefficient ii) Standing wave ratio iii) Input impedance iv) Position of V _{max} & V _{min} form load [10]
		iv) Position of V _{max} & V _{min} form load [10]

What is meant by polarization of the wave. State its types and explain **Q7)** a) any one in detail [8]

b) Explain the terms :i) Depth of penetration

ii) Snell's law

OR

Q8) a) Explain how reflection of wave takes place by perfect conductor [8]

b) Calculate skin depth propagation constant and wave velocity v at a frequency of 1.6 MHz in Aluminium Where 6 = 32.8 Ms/m and $\mu_z = 1$.

[8]

[8]

ಹಾಹಿಕು

[5253]-524