Total No	of Q	uestions	:	6	ı
-----------------	------	----------	---	---	---

SEAT No.:	

P5075

[Total No. of Pages: 2

T.E./Insem.-623

T.E. (E & TC) (Semester - I) ELECTROMAGNETICS

LECTROMAGNETICS

(2015 Pattern)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) A uniform line charge of 4μ C/m is located on the y axis. Find \overline{E} in Cartesian coordinates at P(3, 1, 2) if the charge extends from: [6]
 - i) $-\infty < y < \infty$,
 - ii) -5 < y < 10.
 - b) Derive an expression for the potential difference V_{AB} between point A and B, in presence of an uniform line charge with charge density ρ_L lying on entire Z-axis $(-\infty to \infty)$.

OR

- Using Gauss's Law, derive an expression for electric field intensity (\overline{E}) at point P in free space, due to infinite surface charge with charge density ρ_s , placed on entire Z = 0 plane. Consider point P towards positive side of Z = 0 plane.
 - b) Four infinite uniform sheets of charge are located as follows $20 pC/m^2$ at $y=7,-8pC/m^2$ at $y=3,6pC/m^2$ at y=-1 and $-18pC/m^2$ at y=-4. Find \overline{E} at the point :
 - i) A(2, 6, -4),
 - ii) B(0, 0, 0),
 - iii) C(-1, -1.1, 5).

Q3)	a)	Derive electrostatic boundary conditions for the boundary between two perfect dielectric materials. [6]
	b)	Let $\varepsilon_{r1} = 2.5$ for $0 < y < 1$ mm, $\varepsilon_{r2} = 4$ for $1 < y < 3$ mm, and ε_{r3} for 3
		< y < 5 mm. Conducting surfaces are present at $y = 0$ and $x = 5$ mm. Calculate the capacitance per square meter of surface area if: [4]
		i) ε_{r3} is that of air;
		ii) $\varepsilon_{r3} = \varepsilon_{r1}$
		ii) $\varepsilon_{r3} = \varepsilon_{r1}$, iii) $\varepsilon_{r3} = \varepsilon_{r2}$;
		iv) region 3 is silver.
		OR OR
Q4)	a)	Derive an expression for energy stored in an electrostatic field in terms
	b)	of \overline{D} & \overline{E} . [6] Two extensive homogeneous isotronic dialectrics most on plane $z=0$
	b)	Two extensive homogeneous isotropic dielectrics meet on plane $z = 0$. For $z > 0$, $\varepsilon_{r1} = 4$ and $z < 0$, $\varepsilon_{r2} = 3$. A uniform electric field
		$\overline{E}_1 = 5\hat{a}_x - 2\hat{a}_y + 3\hat{a}_z kV / m \text{ exists for } z \ge 0. $
	X	Find: i) \overline{E}_2 for $z \le 0$;
		ii) The angle which E_1 makes with the interface;
		iii) The energy densitie (in J/m^3) for $z > 0$.
0.5\	,	
<i>Q5)</i>	a)	i) Find \overline{H} in Cartesian components at P(2, 3, 4) if there is a current
		filament on the z axis carrying 8mA in the \bar{a}_z direction.
		ii) Repeat if the filament is located at $x = -1$, $y = 2$.
	b)	Write Maxwell's equation in point form and integral form for static electric
		and steady magnetic fields. [4]
		OR OR
<i>Q6)</i>	a)	Let $\bar{H}=15r\bar{a}_{\phi}mA/m$.
		i) Determine current enclosed by the circular path $r = 5$, $\theta = 25^{\circ}$,
		$0 \le \phi \le 2\pi$ by using line integral side of Stokes theorem.
		ii) Determine current by surface integral side of Stokes theorem.
	b)	State and prove Ampere Circuital Law. [4]