Total No. of Questions : 6]	250	SEAT No.:	
P5074		[Total No. of Pag	es : 2

T.E./Insem.-622

T.E. (E & TC) (Semester - I) DIGITAL SIGNAL PROCESSING (2015 Pattern)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) All questions carry equal marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data if necessary.
- Q1) a) An analog signal is given by

 $x(t) = 3\cos 100\pi t + 2\sin 300\pi t - 4\cos 100\pi t$

- i) What is the Nyquist rate for this signal?
- ii) Write the equation of sampled signal.
- iii) If the signal is sampled at a rate of 200 sam/sec. What is the discrete time signal obtained after sampling.
- b) Explain the basic elements of DSP system.

OR

Q2) a) Explain the concept of basis function and orthogonality. Check whether the functions given are orthogonal or not over a time interval [0, 1].

$$f(t)=1; x(t)=\sqrt{3}(1-2t).$$
 [6]

b) What are the advantages of digital signal processing over analog signal processing. [4]

P.T.O.

[6]

[4]

Compute the DFT of following sequence *Q3*) a)

$$x(n) = \cos \frac{n\pi}{4} n = 0,1,2,3$$
 [4]

- Given $x(n) = [0 \ 1 \ 2 \ 3]$, find x(k) using DIT FFT algorithm. b) [4]
- How many computations are required to compute 16 point DFT using c) DFT & FFT algorithm. [2]

OR

Compute the circular convolution of following sequences [4] **Q4**) a) $x_1(n) = \{1 \ 1 \ 2 \ 2\} \ x_2(n) = \{1 \ 2 \ 3 \ 4\}$.

- State and prove circular time shift property. b) [6]
- State and prove the convolution property of Z.transform. **Q5**) a) [4]
 - Compute the Z.transform of following sequences [6] b)
 - x(n)=n u(n).
 - ii) $x(n) = \left(\frac{1}{2}\right)^n u(n) + (3)^n u(-n-1)$

Q6) a) For

Find x(n)

if ROC is

- $|z| > \frac{1}{3}$.
- ii) |z| < 1.
- $\frac{1}{3} < |z| < 1$. iii)
- discrete

 2 Explain the causality and stability of discrete time systems w.r.t. Z.transform.