| Total No. of Questions: 8] | 90 | SEAT No. :            |   |
|----------------------------|----|-----------------------|---|
| PA-1194                    |    | [Total No. of Pages : | 4 |

## [5925]-216

## S.E.(Electronics & Computer/Electronics/E&TC) SIGNALS AND SYSTEMS (2019 Pattern) (204191) (Semester - IV)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator steam tables is allowed.
- 4) Assume suitable data, if necessary.
- Q1) a) What is Fourier series. Write formula for exponential and Trignometric Fourier series. [6]
  - b) State and explain following properties.
    - i) Time reversal
    - ii) Time Differentiation
    - iii) Convolution
  - c) Determine the FS representation for the signal with periodic wave, shown below using exponential method. [6]

[6]



**Q2)** a) Find the trignometric Fourier series for the periodic signal x(t) given below.



|             | b)    | State the following properties of CTFS.                                                                   | [6] |
|-------------|-------|-----------------------------------------------------------------------------------------------------------|-----|
|             |       | i) Time scaling                                                                                           |     |
|             |       | ii) Time Integration                                                                                      |     |
|             |       | iii) Modulation                                                                                           |     |
|             | c)    | Explain Gibb's phenomenon of Fourier series.                                                              | [4] |
| <b>Q</b> 3) | a)    | Find the Inverse Fourier Transform using partial fraction expansion. $X(jw) = \frac{1}{(jw)^2 + 5jw + 6}$ | [7] |
|             | b)    | Find the Fourier Transform of a constant signal AO.                                                       | [6] |
|             | c)    | Find the Fourier Transform of a                                                                           | [4] |
|             |       | i) $x(t) = \delta(t) + u(t)$<br>ii) $x(t) = u(-t)$                                                        |     |
|             | 7     | Using properties of F.T.                                                                                  |     |
| <b>Q</b> 4) | a)    | State any six properties of Tourier Transform.                                                            | [6] |
| ~ /         | b)    | Find the Fourier Transform of the signum function.                                                        | [7] |
|             | c)    | Obtain the Inverse Fourier Transform of                                                                   | [4] |
|             |       | $X(jw) = \frac{2}{jw+1} + \frac{1}{jw+2}.$                                                                |     |
| Q5)         | a)    | Find the Laplace Transform and find ROC.                                                                  | [6] |
|             |       | $x(t) = e^{-3t}u(t) + e^{-2t}u(t)$                                                                        |     |
|             | b)    | State and explain Initial value theorem and final value theorem.                                          | [6] |
|             | c)    | Find the Inverse Laplace Transform of $X(s) = \frac{2}{(s \oplus 4)(s-1)}$ if the R                       | .OC |
|             |       | is $-4 \le R_e(s) \le 1$ .                                                                                | [6] |
| [592        | :5]-2 |                                                                                                           |     |

## **Q6)** a) Find the Laplace Transform of the signal drawn below Find ROC. [6]



b) Solve the differential equation  $\frac{dy(t)}{dt} + 3y(t) = x(t)$  for input

 $x(t) = e^{-2t}u(t)$ . Assume zero initial conditions. [6]

- c) Find the Laplace Transform of following using the properties. [6]
  - i)  $x(t) = \frac{d}{dt}u(t)$
  - $ii) \qquad x(t) = u(t+1)$

## **Q7)** a) Define the following terms:

[6]

- i) Probability
- ii) Joint Probability
- iii) Conditional probability
- b) A coin is tossed three times. Write the sample space which gives all possible out comes. A random variable X. Which represents the number of heads obtained on any tripple toss. Calculate and draw the CDF and PDF.
- c) In a pack of cards, 2cards are drawn simultaneously. What is the probability of getting a Queen and Jack combination. [4]

OR

- **Q8)** a) Define probability. Also write the properties of probability. [5]
  - b) A perfect die is thrown. Find the probability that [6]
    - i) You get even number
    - ii) You get perfect square

[5925]-216

The probability density function of a random variable 'X' is given by c)

Mean square
iii) Standard deviation  $f_x(x) = \frac{1}{a} \quad |x| \le a$ [6]