Seat No.	
•	200

[5559]-138

S.E. (E&TC/Elect.) (Second Semester) EXAMINATION, 2019

INTEGRATED CIRCUITS

(2015 **PATTERN**)

Time: 2 Hours Maximum Marks: 50

N.B.: (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.

- (ii) Neat diagrams must be drawn wherever necessary.
- (iii) Figures to the right side indicate full marks.
- (iv) Use of calculator is allowed.
- (v) Assume suitable data if necessary.
- 1. (a) Explain following OP-AMP parameters and state their ideal value

[6]

- i. Slew Rate. ii. Input offset current. iii. Supply voltage rejection ratio.
- (b) Draw the circuit diagram of practical integrator and draw its frequency response. Write equation for output voltage Vo. [6]

Or

2. (a) Draw Block diagram of OP-AMP and explain in brief.

[6]

(b) Design a practical differentiator to differentiate the input sine wave signal. Assume Fa=1KHz,

C1=0.1uf and R1=82 Ohms.

[6]

3. (a) Draw circuit diagram and input-output waveform of precision half wave and full wave rectifier.

[6]

(b) Explain with a neat circuit diagram working of V to I converter with grounded load and derive the equation for load current IL.

P.T.O.

4. (a) Explain with a neat circuit diagray waveform and hysteresis plot.	am working of inverting Sch	mitt trigger with its input-output [6]
(b) Draw circuit diagram of R-2R lad	der DAC and write its output	voltage equation. [6]
5. (a) Explain PLL operation in detail w	ith neat block diagram.	[6]
(b) Design Wein bridge oscillator for	Fo=1KHZ and draw its circui	t diagram. Assume suitable data
		[7]
	Or	
6. (a) Draw and explain Frequency Sh	ift Keying (FSK) demodulator	r using IC565. [6]
(b) . Explain with neat circuit diagra oscillations Fo.	am RC phase shift oscillator a	nd write equation for frequency of [7]
7. (a)Draw circuit diagram of first ore as function of frequency.	der low pass butterworth filter	and derive gain (Vo/Vin) of filter [7]
(b) Draw circuit diagram of Secon equation.	nd order high pass butterworth	n filter and write its gain (Vo/Vin) [6]
8. (a)Draw circuit diagram of first ord as function of frequency.	er high pass butterworth filter	and derive gain (Vo/Vin) of filter [7]
(b) Draw circuit diagram of Second equation.	and order low pass butterworth	
5559]-138	2	