Total No. of Questions—8]

[Total No. of Printed Pages—5

Seat No.

[5352]-531

S.E. (Elect.&TC) (First Semester) EXAMINATION, 2018

SIGNALS AND SYSTEMS

(2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Solve question No. Q. 1 or Q. 2, Q. 3 or Q. 4. Q. 5 or Q. 6, Q. 7 or Q. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data if necessary.
- 1. (a) Perform the following operations and sketch the signals:

[6]

(i)
$$y(t) = r(t+1) - r(t) + u(t-2)$$

(ii)
$$y[n] = u[n+3] - 2u[n-1] + u[n-4]$$

- (b) Using impulse response properties, determine whether the following systems are: [6]
 - (i) Static/Dynamic
 - (ii) Causal/Non-causal.

(iii) Stable/Unstable:

(1)
$$h(t) = e^{-2|t|}$$

(2)
$$h(n) = 2\delta[n] - 3\delta[n-1].$$

Or

2. (a) Find Even and Odd components of the following signals:[6]

(i)
$$x(t) = 3t + t \cos t + t^2 \sin^2 4t$$

$$(ii)$$
 $x[n] = \{1, 1, -1, -1\}.$

(b) Find convolution of the following, using graphical method: [6]

$$(i) \quad x[n] = u[n]$$

$$(ii)$$
 $h[n] = a^n u[n]$ $0 < a < 1$

3. (a) Find Fourier transform of the following signals using appropriate properties: [6]

$$(i) x(t) = \frac{d}{dt} \{e^{-at}, u(t)\}$$

(ii)
$$x(t) = e^{-2t} u(t+2)$$
.

(b) Find and sketch exponential Fourier series of the given signal: [6]

Find and sketch the trigonometric Fourier series of train of 4. (a) impulse defined as : [6]

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kTs)$$

- Find Fourier transform of the following signals: [6] (*b*)
 - u(t)
 - $\operatorname{sgn}(t)$.
- Find Laplace transform of the following: **5**. (a)

(i)
$$\mathbf{x}(t) = \frac{d}{dt} t e^{-t} \mathbf{u}(t)$$
 [3]

- $x(t) = e^{-3t}u(t) * \cos(t-2)u(t-2)$ [4]
- (*b*) Find Initial and Final values of the signal x(t) having unilateral Laplace transform : [6]
 - $X(s) = \frac{7s + 10}{s(s+2)}$ (i)
 - (ii)

Or

Find inverse Laplace transform of: 6. (a)

No. 16.28 on the last of the l $X(s) = \frac{3s+7}{(s^2-2s-3)}$.

for:

- (i)
- (iii) 1 < s < 3.

[7]

(b) Find transfer function and impulse response of the causal system described by the differential equation: [6]

$$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + \sigma y(t) = 2\frac{d}{dt}x(t) - 3x(t).$$

7. (a) Find auto-correlation function of the signal given, using graphical method: [6]

$$\mathbf{x}(n) = \begin{cases} 2, 1, -2, 1, 3 \\ \uparrow \end{cases}$$

(b) The probability density function of a random variable X is given by:

$$f_X(x) = e^{-x} u(x)$$

determine:

- (i) CDF
- (ii) $P(X \le 1)$
- (iii) $P(1 < X \le 2)$
- (iv) P(X > 2)

8. (a) The probability density function of a random variable 'X' is given by:

$$f_{X}(x) = \begin{cases} \frac{1}{a} & |x| \le a \\ 0 & \text{otherwise} \end{cases}$$

1 , •	
determine	
derer iii iie	

- (i) Mean E[X]
- (ii) Mean square value $\mathrm{E}[\mathrm{X}^2]$
- (iii) Standard deviation.
- (b) State and prove the relationship between auto-correlation and energy spectral density of Energy signal. [6]

[5352]-531