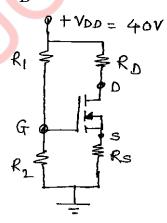
Seat	
No.	8


[5352]-532

S.E. (E & TC/Electronics) (I Semester) EXAMINATION, 2018 ELECTRONIC DEVICES AND CIRCUITS (2015 PATTERN)

Time : Two Hours Maximum Marks: 50

(i) Answer Q. 1 or 2, 3 or 4, 5 or 6, 7 or 8.

- (ii) Neat diagram must be drawn wherever necessary.
- Use of logarithm tables, slide rule, Mollier charts, electronic pocket calculator and steam table is allowed.
- (iv)Assume suitable data, if necessary.
- 1. Explain the following terms with respect to JFET: (a) [6]
 - Pinch off voltage (Vp) (i)
 - Cut-off voltage $(V_{GS}(off))$ (ii)
 - Forward transconductor (g_m).
 - For the circuit shown in figure 1. Calculate I_{DQ} , V_{DSQ} (*b*) V_{D} . [6]

Assume:

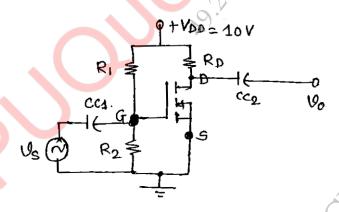
$$R_1 = 22 \text{ M}\Omega, R_D = 3 \text{ k}\Omega$$

$$R_2$$
 = 18 M Ω , V_{TN} = 3 V, R_S = 0.82 k Ω

$$K_n = 0.12 \text{ mA/V}^2$$
 $V_{GS} = 10.48 \text{ V}$

$$V_{CS} = 10.48 \text{ V}$$

(Figure 1)


- 2. (a) Draw and explain the small signal mode of the JFET. [6]
 - (b) Explain the following non-ideal voltage current characteristics of EMOSFET:
 - (i) Finite output resistance
 - (ii) Body effect
 - (iii) Subthreshold conduction.

[6]

- 3. (a) Draw the common source E-MOSFET amplifier and explain its modes of operation in detail. [7]
 - (b) Draw and explain the working of MOSFET as current sink and source. [6]

Or

4. (a) For the circuit diagram shown in figure 2, calculate Av, Ri and Ro.

Assume:

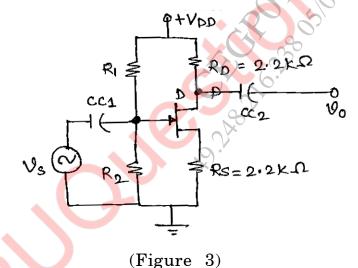
$$R_1 = 10 M\Omega$$

$$R_2 = 3.6 M\Omega$$

$$K_n = 0.5 \text{ mA/V}^2$$

$$\lambda = 0.01 \text{ V}^{-1}$$

$$V_{TN} = 1.5 \text{ V}$$


(Figure 2)

(b) Write a short note on "MOSFET as Active resistor." [6] [5352]-532

- **5.** (a) What is the effect of negative feedback on the following parameters: [8]
 - (1) Gain stability
 - (2) Bandwidth
 - (3) Input impedance
 - (4) Out impedance.
 - (b) Draw and explain the Hartley oscillator. Give equation for frequency of oscillation. [5]

Or

6. (a) For the circuit diagram shown in figures, calculate the β, Rif,Rof and Gmf. [8]

Assume:

$$R_1 = 10 M\Omega$$

$$R_2 = 1 M\Omega$$

$$R_D = 2.2 k\Omega$$

$$R_S = 2.2 k\Omega$$

$$Y_{OS} = 20 \mu s$$

$$g_{\rm m} = 2.4 \, \text{MA/V}$$

(b) State Barkhausen criteria and draw RC phase shift oscillator.

[5]

7. (a) Draw and explain the internal block diagram of negative three terminal adjustable Voltage regulators. [8]

(b) Write a short note on Boost SMPS.

[4]

Or

- 8. (a) Draw the detailed block diagram of SMPS and explain its operation. [8]
 - (b) Design and adjustable voltage regulator using LM 317 for output voltage from 10 to 20 V and draw the typical connection diagram.

Assume : $R_1 = 240 \Omega$ and Iadj. 100 μ A. [4]

[5352]-532

4

Stignon on the second of the s