Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat	
No.	, \

[5252]-535

S.E. (E&TC/Electronics) (First Semester) EXAMINATION, 2017 DIGITAL ELECTRONICS (2015 PATTRN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Solve Q. No. 1 or Q. No. 2; Q. No. 3 or Q. No. 4; Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic, pocket calculator and steam tables is alowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Design full adder using logic gates.

[4]

(b) Minimize the following expression using K-map and implement using logic gates:

$$Y = \Sigma m(1, 3, 5, 9, 11, 13)$$

[4]

(c) Write a short note on one-bit memory cell.

[4]

2. (a) Desogn 3-bit binary to gray code converter

[6]

(b) Draw and explain 4-bit Ring counter

[6]

3. (a) Draw and explain the working of 2-input CMOS NAND gate.

[6]

P.T.O.

	(<i>b</i>)	Explain state diagram and state table with suitable exam	ıple.
		8.1	[6]
4.	(a)	Explain the following characteristics of digital IC's:	[6]
		(i) Fan in	
		(ii) Fan out	
		(iii) Propagation delay.	
	(b)	Write short note on state reduction with suitable example	. [6]
5.	(<i>a</i>)	Explain in detail the architecture of PLA.	[6]
	(<i>b</i>)	Implement the following functions using PLA:	[4]
		$F1 = \Sigma m (1, 3, 5, 7)$	
		$F2 = \Sigma m (0, 2, 4, 6).$	
	(c)	List out advantages of semiconductor memories.	[3]
6.	(a)	Draw circuit of one-cell of static and explain its working	ng.
			[6]
	(<i>b</i>)	Differentiate between ROM and RAM.	[4]
	(c)	State advantages of PLD over fixed function IC.	[3]
7.	(a)	Draw and explain interrupt register in detail of 8051.	[6]
	(<i>b</i>)	Differentiate microprocessor and microcontroller.	[4]
	(c)	List advantages of microcontroller.	[3]
8.	(a)	Draw and explain block diagram of microcontroller.	[6]
	(b)	Explain the use of program counter.	[4]
	(c)	Explain ACALL instruction	[3]