Seat	
No.	1.5

[5152]-534

S.E. (E & TC/Electronics) (First Semester) EXAMINATION, 2017 DATA STRUCTURES AND ALGORITHMS (2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

Neat diagrams must be drawn wherever necessary. **N.B.** :- (i)

- (ii) Figures to the right indicate full marks.
- Assume suitable data, if necessary.
- Sort the following data using merge sort and selection sort. [6] 1. (a)222 142 317 45 187
 - What will be the output of the following code? Justify your (*b*) answer.

```
CHARDING II. OG SHRY
for(i=0;i<4;i++)
   for(j=0;j<4;j+
     a[i][j]=20 * (i+j);
     printf("%d",a[i][j]);
     printf("\n");
   printf('%d%d",i,j);
```

		Or
2.	(a)	Write the following functions in 'C': [6]
		(i) STRCOPY() To copy a string to another string using array.
		(ii) STRLENGTH() To find length of string using array.
		Note: Do not use standard library functions.
	(<i>b</i>)	Explain Algorithm Binary search with example. [6]
3.	(a)	Convert the given infix expression to postfix expression using
		stack. [5]
	1	(a\$b)*c-d/d
		Note: \$ = Exponent operator
	<i>(b)</i>	Define Queue and explain any one application of Queue. [4]
	(c)	Differentiate Singly Linked List and Doubly Linked List. [4]
		Or
4.	(<i>a</i>)	Write a 'C' function to delete a number from singly linked
		list. [5]
	<i>(b)</i>	Explain Stack operations PUSH and POP with example. [4]
	(c)	Compare array and linked list. [4]
		20,001
5.	(a)	Construct the binary search tree from the following elements:
		12, 8, 25, 14, 9, 6, 18.
		Also show preorder, inorder and postorder traversal for the
		same. [6]

((b)	Define Binary Tree. Name and explain with suitable exa	ample
	1	the following terms :	
	((i) Root node	
	((ii) Left sub-tree and Right sub-tree	-0
	((iii) Depth of tree.	[6]
		Or	
6. ((a)	Define the following terms with example with respect to B	inary
		Tree:	
	N.	(i) Strictly Binary Tree	
		(ii) Completely Binary Tree	
		(iii) Binary Search Tree	[6]
(Explain the different cases to delete an element from b	-
	\$	search tree.	[6]
7. ((a)	Explain with suitable example, BFS and DFS traversal	of a
••		graph.	[6]
(What is MST ? Explain with suitable example Krus	
		Algorithm to find out MST.	[7]
		Or	
8. ((a)	Explain with suitable example the techniques to represe	ent a
C	(Graph.	
]	Note: Consider Graph of minimum 6 vertices.	[6]
[5152]-	-534	3 F	P.T.O.
		N.	

Find shortest path from node A to all nodes in the graph shown in Fig. 1 using Dijkstra's algorithm. [7]