Total No. of Questions : 4]	SEAT No.:
P8482	[Total No. of Pages : 2
	-22/BE/Insem-68
B.E. (Electrical)	
ADVANCED CONTROL SYSTEM	
(2019 Pattern) (Semester - VII) (403142)	
Time: 1 Hour]	[Max. Marks: 30
Instructions to the candidates:	
1) Answer any one question O.4	from each pair of questions: Q.1 & Q.2 and Q.3 &
2) Figures to the right side	indicate full marks.
Q1) a) Draw Electrical net	work & Derive Transfer function of lag
compensation network	
b) For a certain system,	
$G(s) = \frac{5}{s(1+0.1s)(1+0.1s)}$	0(3s)
Design a suitable lag c	ompensator, phase margin = 50° . [10]
	OR
Q2) a) Design lead compensa	tion for the system having open loop transfer

function.

G(s)H(s) =
$$\frac{25}{s(0.5s+1)(0.016s+1)}$$
 & PM around 42

- Explain steps to be taken to design lead network by bode plot approach. b) **[5]**
- Explain any one peculiar behavior of nonlinear system : **Q3**) a) **[5]**
 - i) Jump resonance
 - ii) Limit cycle
 - Sub-harmonic oscillation iii)

P.T.O.

- b) In unity feedback system an ideal relay with output equal to ± 1 unit is connected in cascade with [10]
 - $G(s) = \frac{20}{s(s+1)(s+3)}$ Determine amplitude and frequency of limit cycle if it Exist by describing function method.

[8]

OR

- Q4) a) Explain Lyapunov stability analysis and its stability conditions. [7]
 - b) Explain common type of Nonlinearities with diagrams.