Total No. of Questions : 8]

P291

[6003] - 370

[Total No. of Pages : 3

SEAT No. :

370

T.E. (Electrical Engineering) CONTROL SYSTEM ENGINEERING

(2019 Pattern) (Semester -II) (303150)

Time : 2¹/₂ Hours]

[Max. Marks : 70

- Instructions to the condidates:
 - 1) Solve Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, and Q.7 or Q.8.
 - 2) Use of Electronic Calculator is permitted.
 - 3) Assume suitable data if necessary.

Q1) a) Explain two special cases of routh Hurwitz criterion to determine stability. [8]

b) The OLTF of a unity feedback system is given by

[9]

[8]

 $G(s) = \frac{k}{(s+1)(s+3)(s^2+4s+13)}$ By applying routh criterion determine stability of system. Find value of K which will cause sustained

oscillations. Determine frequency of sustained oscillations.

OR

Q2) a) Explain any four rules for construction of root locus.

b) Sketch the root locus, for unity feedback system determine range of

values of K and comment on stability. G (s) = $\frac{\kappa(3, 4)}{s^2(s+3.6)}$ [9]

P.T.O.

Explain different frequency domain specifications. *Q3*) a) [7] Sketch polar plot for the system given. Also determineGM and PM b) G (s) = $\frac{60}{(s+1)(s+2)(s+5)}$ [10] OR tion between frequency domain and time domain **Q4**) a) Explain co re [7] Sketch the nyquist plot, for given system and comment on stability b) G(s [10] State advantages of Bode plot **Q5**) a) [6] Draw bode plot for a unity feedback system with G(S) given as. Also b) find GM, PM and comment on stability of system. [12] $G(s) = \frac{160}{s(s+2)(s+20)}$ OR Explain terms gain cross over frequency, phase cross over frequency, **Q6**) a) gain margin and phase margin in Bode, plot. [6] G(\$) Draw bode plot for a unity feedback system with given as. Also b) find GM, PM and comment on stability of system: $G(s) = \frac{20(s+2)}{s(s+10)}$. A8.16.2 [12]

[6003] - 370

2

- Q7) a) Derive transfer function of armature controlled DC servo motor. [9]
 - b) Obtain the tuning of PID controller for a unity feedback system with open loop transfer (9) functions as using ziegler Nichols method

G(S)=[9] $s(s^2)$ OR Explain Cag network and derive its transfer function **Q8**) a) [9] PID controller. [9] b) Explain ⊯ ى 9.26.2.0 2000 10. A. O. South 248-20-20° 3 [6003] - 370