Total	No. o	of Questions : 4] SEAT No. :
PA-	1004	46 [Total No. of Pages : 2
		[Total No. of Fages : 2
		[6009]-329
		T.E. (Electrical)(Insem)
		POWER SYSTEM - II
		(2019 Pattern) (303148) (Semester - II)
		
Time		
Instru		ns to the candidates:
	1)	Answer Q1 or 2, Q3 or 4.
	2)	Near diagrams must be drawn wherever necessary.
	3)	Figures to the right side indicate full marks.
	<i>4</i>)	Use of calculator is allowed.
	<i>5</i>)	Assume suitable data if necessary.
Q 1)	a)	Derive the equations for ABCD parameters in a long transmission line.[7]
Q 1)	<i>a)</i> •	Derive the equations for ADCD parameters in a long transmission line.[7]
	b)	A 132-kV, three-phase, 150km 50-Hz transmission line has the following
		parameters: $R = 0.11 \text{ ohm/km} L = 1.5 \text{ mH/km} C = 0.01 \mu\text{F/km}$ [5]
		Calculate
		i) Surge impedance
		ii) Surge impedance loading
		iii) Propagation constant
	c)	What are the methods used to improve surge impedance loading? [3]
	,	OR
00)	,	.0.
Q2)	a)	In a three phase transmission line, $A=0.98 \angle 2^\circ$, $B=100 \angle 80^\circ \Omega$,
		C=0.002 \(\sqrt{90}^\circ\), if voltage on both end of the transmission line is maintained
	á	at 400kV with angle difference of 30°, determine [7]

receiving end active power and

- maximum possible active power transfer receiving end reactive power
- b) Give the classification of transmission line in detail.

[5]

P.T.O.

- c) State whether the following statement is true or false with mathematical justification.
 - "In long transmission line, voltage regulation of line is always positive under no load condition". [3]
- Q3) a) A single circuit transmission line at voltage level of 750kV and 50Hz is planned over a distance of 1000km. The average values of line parameters are as given below: For system voltage of 750kV, $r = 0.0136 \,\Omega/\text{phase/km}$ and $x = 0.272 \,\Omega/\text{phase/km}$. [7]

Determine

- i) Power transferred through this line with equal magnitude of sending and receiving end voltages with 30 degree phase difference.
- ii) Also calculate power transferred when line is compensated with 50% series capacitive compensation.
- b) State the formula for power loss due to corona. Elaborate the methods which will reduce the corona loss. [5]
- c) Elaborate the effect of smoothness factor of conductor and air density on the critical disruptive corona voltage. [3]

OR

- Q4) a) A three phase transmission line has conductor radius of 0.50 cm and are spaced 3 m in an equilateral arrangement. The air temperature is 26° Celsius and pressure is 74cm of Hg. Surface factor is 0.85. Take breakdown strength of air 30kV/cm (peak). Determine the
 - i) Disruptive critical voltage in kV/ph
 - ii) Local visual critical voltage in kV/ph. Irregularity factor for local visual corona is 0.72
 - iii) Visual critical voltage for general corona. Irregularity factor for general visual corona is 0.82.
 - b) What are the advantages of EHV AC transmission line? [5]
 - c) State the following statements is true or false with proper mathematical justification:
 - "The corona losses are increases with increase in distance between two conductors."