Total	No.	of	Questions	:	8]
-------	-----	----	-----------	---	----

SEAT No. :	
------------	--

PA-1464

[Total No. of Pages: 2

[5926]-81

T.E. (Electrical)

CONTROL SYSTEM ENGINEERING

(2019 Pattern) (303150) (Semester - II)

Time : 2½ *Hours*]

[Max. Marks: 70

Instructions to the candidates:

- 1) Answer any one question from each pair of questions : Q.1 & Q.2, Q. 3& Q.4, Q.5 & Q.6, Q.7 & Q.8.
- 2) Figures to the right indicate full marks.
- Q1) a) Using Routh Hurwitz criterion for the unity feedback system having [9]

G(S) =
$$\frac{K}{S(S+1)(S+2)(S+5)}$$

- i) Find the range of k for stability.
- ii) Find the value of k for marginally stable and corresponding closed loop poles.
- b) Explain the terms Real axis loci, Angle of asymptotes, Centroid and Break away point to draw Root locus. [8]

OR

Q2) a) Sketch the root locus of the following feedback systems and commentonstability. [9]

$$G(S)H(S) = \frac{K}{S(S+2)(S+3)}$$

- b) Explain Routh's stability criterion with its special cases. [8]
- Q3) a) Define different frequency domain specifications. [8]
 - b) Sketch the Polar plot. Determine stability of the system. [10]

$$G(S)H(S) = \frac{1}{S(S+1)(2S+1)}$$
OR

- **Q4**) a) Explain how will you find stability from the polar plot? [8]
 - Sketch the Nyquist plot. Comment on the stability. [10] b)

$$G(S)H(S) = \frac{1}{S(S+2)}$$

- Explain how gain margin and phase margin are determined from Bode **Q5**) a) plot and stability from that. **[6]**
 - Find the stability of the following unity feedback system sketching the b) Bode plot. [12]

$$G(S) = \frac{10(S+20)}{(S+1)(S+2)(S+3)}$$

Explain the nature of bode plots for: **Q6**) a)

[6]

- poles at origin
- simple pole ii)
- simple zero iii)
- Find the stability of the following unity feedback system sketching the b) Bode plot. [12]

$$G(s) = \frac{20(S+2)}{S(S+10)}$$

- Draw electrical network for Lag compensator and derive its transfer **Q7**) a) function. Draw pole zero plot. [9]
 - Describe working of potentiometers.

[8]

OR

- Draw electrical network for Lead compensator and derive its transfer **Q8**) a) function. Draw pole zero plot.
 - Explain tunning of PID controllers using Ziegler-Nichols method.[8] b)

3.078.76.7