Total No. of Questions: 10]	SEAT No.:	
D2268	[Total No. of Pages : 3	

[5353] 562

TE. (Electrical)

ELECTRICAL MACHINES - II

(2015 Pattern) (End Semester)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q4, Q.5 or Q.6, Q.7 or Q8, Q.9 or Q10.
- 2) Neat Diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Use of electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary.
- Q1) a) Explain advantages of Rotating field type system over rotating armature system in case of synchronous generator.[4]
 - b) A 4 pole, 50 Hz star connected alternater has flux per pole of 0.12 wb. It has 4 slots per pole per phase. The conductors per slot are 4. If the winding coil span is 150°. Calculate phase value of induced emf. [6]

OR

- **Q2)** a) Draw per phase equivalent circuit of alternater and mark all parameters in it.
 - b) Slip test is conducted on 3 KVA, 415V, 3 phase star connected alternater. Calculate voltage regulation of alternater at full load 0.8 p.f. lag. The observation table is as given below. Take Ra = $5\Omega/p^h$ [8]

V _{min}			I_{min}		
(line)	(line)				
39.9V	44.3V	1.1A	0.8A		

- **Q3)** a) Write a short note on 'synchroscope'
 - b) With neat diagram, explain working of 3 phase synchronous Induction motor. [6]

OR

[4]

Q4) a) Draw V curve and A curve	of 3 phase synchronous motor.	[2]
--	-------------------------------	-----

b) The o.c. & s.c. test results of a 3 phase, 3kvA, 415V, 4.2 amp star connected alternater are given below

O.C. Test results [8]

If(A)	0	0.1	0.14	0.2	0.23	0.28	0.36	0.44	0.58	0.67
Voc(1)	0	120	160	200	240	280	320	360	400	420
volts		2								

S.C. Test Results

If (A) 0.08 0.12						
I _a sc (A) 1.0 1.5	2.0	2.5	3.0	3.5	4.0	4.2

Using must method calculate voltage regulation of alternater at full lead 0.8 pf lead.

- Q5) a) Explain the operation of 3 phase Induction motor as induction generator.State advantages of induction generator.[8]
 - b) With neat diagram explain Construction & working of linear Induction motor. [8]

OR

- **Q6)** a) Write a short note on 'Energy efficient 3 phase Induction motors. [8]
 - b) State different methods of controlling speed of 3 phase Induction motor. With neat diagram explain roter resistance control. Draw its speed torque characteristics for different values of roter resistances. [8]
- **Q7)** a) Explain how unidirectional torque is produced when d.c. series motor is connected to A.C. supply. What are the problems associated with a.c. operation. [8]
 - b) With neat diagram explain

[8]

- i) Conductively compensated series motor
- ii) Inductively compensated series motor

OR

Q8) a) A blocked roter test is conducted on single phase 50Hz, 230V, 6.2 A 6000 rpm series motor. The test results are as below.

Vsc	Isc	Wsc
130V	4 A	160 w

Taking voltage scale of lcm = 20V Draw circle diagram. Determine full load efficiency? Full load power factor [10]

- Explain modifications necessary in the construction of d.c series motor b) to operate it satisfactorily on a.c. supply. [6]
- With neat diagram explain the construction & working of capacitor start **Q9**) a) Induction motor. Draw the phase diagram & torque speed characterstics of this motor. [10]
 - Explain double revolving field theory in case of single phase induction b) motor. Hence draw its torque-speed characteristics. [8]

OR

A 220 v, 50 Hz single phase induction motor has following parameters. *Q10*)a)

[10]

$$R_1 = 11.4\Omega, R_2^1 = 13.8\Omega, X_1 = 14.3\Omega$$

$$X_2^{1}=14.3, X_m=275\Omega R_m=0\Omega$$

Calculate current, power factor, input power, efficiency Given-friction & windage losses =30.2 watts

on the state of th With neat diagram explain construction &working of shaded pole b) Induction motor.

