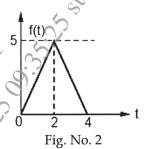

Total No. of Questions: 8]	SEAT No. :
PD4059	[Total No. of Pages : 3
	2]-18
S.E. (Electrical Engineering)	
NETWORK ANALYSIS	
(2019 Pattern) (Semester - IV) (203147)	
	100111)
Time: 2½ Hours]	[Max. Marks : 70
Instructions to the candidates:	,0
1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5	
2) Neat diagrams must be drawn wher	
3) Figures to the right indicate full m4) Use of calculator is allowed.	arks.
5) Assume suitable data if necessary.	0,5,
, , , , , , , , , , , , , , , , , , , ,	O kg
Q1) a) What is time constant? Explain	n time constant in case of series R-L and
series R-C circuit.	[7]
	and C elements for transients. Mention the
representation at the instant of	switching. [5]
	tage across capacitor in series RL circuit
	for t > 0. Assume initial charge across
capacitor is zero.	[5]
	OR
	F are connected in series with a switch
	eted to the circuit. At $t = 0^-$ the switch is in
the switch at $t = 0^+$.	witch is opened. Find the voltage across
the switch at $t = 0$.	E. I
	witch is opened. Find the voltage across
(t) (k	
2 v = 0.5 i	Sn-100 7 007
-T	30, 9.
	. No. 1
b) Evaloin the behaviour of D. I.	and Calamanta at the time of exvitabing at

b) Explain the behaviour of R, L and C elements at the time of switching, at t = 0, at $t = 0^+$ and at $t = \infty$. [10]

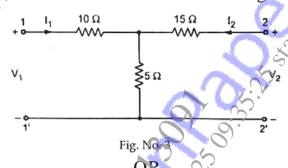
Q3) a) Find the Laplace Transform of a ramp function. [6]

b) State and explain the convolution theorem of Laplace Transform. [6]


c) State ant six properties of Laplace Transform. [6]

b) Find the Laplace transform of e-at sin ωt.

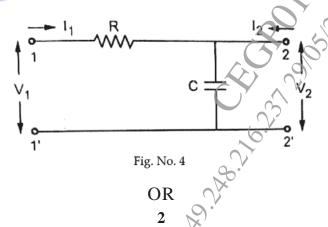
[6]


c) Obtain F(s) for the signal shown in fig. no. 2. Also determine its Laplace transform. [6]

Q5) a) Express impedance parameters in terms of transmission line parameters.

[9]

b) Find Z parameters of the network shown in figure no. 3. [8]



Q6) a) Define the following terms in relation with filter and give significance of each.

- i) Pass band
- ii) Stop band

[6402]-18

- iii) Cutoff frequency
- b) What is high pass filter? Derive the expression for the cutoff frequency of prototype low pass filter in terms of L and C. [8]
- Q7) a) Explain the necessary conditions for transfer function [9]
 - b) Determine the driving point impedance voltage ratio transfer function for the network shown in fig. No. 4. [9]

