Seat		
No.	9	

[5559]-158

S.E. (Electrical) (Second Semester) EXAMINATION, 2019 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2015 PATTERN)

Time: 2 Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- 1 a) Write short note on decision making statements and loops in 'C' language? [6]
 - b) Determine the number of possible roots by Descarte's rule of sign for the given example [6]

 $f(x)=x^4-5x^3-x^2+15x-5=0$.

OR

- What are the different data types in 'C' language? Explain each with their [6] ranges
 - b) Using Birge-Vieta method find root of $x^3 x^2 x + 1 = 0$ at the end of two iterations with initial value $X_0=0.5$
- Solve the following equation $f(x) = x^2 3$ using bisection method. Show [6] 6 iterations. Take a=1, b=2
 - b) Using Newton's backward interpolation technique find y at x = 4.5 [7]

X	1	2	3	4	5
Y	2.38	3.65	5.85	9.95	14.85

P.T.O.

ΛD

[6]

[7]

[7]

4 a) Using Lagrange's formula find y at x=10 from the following data

x o	5	6	9	11
У	12	13	14	16

b) Fit a straight line to the following data considering y as a dependent variable.

\(\frac{1}{x}\)	1	3	5	7	9
у	1.5	2.8	4.0	4.7	6.0

- Find the value of y at x = 0.1 for the equation dy/dx = 1 + xy and y(0) = 1. Take step size h = 0.1 by Taylor series method.
 - b) Integrate using Simpson's 3/8 rule, taking h = 1: [6]

OR

- Use 4th order RK method to estimate y(0.2) when $\frac{dy}{dx} = x^2 + y^2$ with y(0) = 0. Take step size h=0.2.
 - b) Using Newton Cote's formula, derive trapezoidal rule for numerical integration [6]
- 7a) Find [A]⁻¹ using Gauss-Jordan method [6]

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

b) Explain Gauss elimination method to solve linear simultaneous equations. [6]

OR

8a) Use Gauss Seidel method to solve the following system of equations at the end of 3^{rd} terations. Use initial values as x = 0, y = 0 and z = 0.

20x + y - 2z = 17 3x + 20y - z = -182x - 3y + 20z = 25

[6]

b) Find numerically the largest eigen value by power method. Show 5 iterations

 $A = \begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix} X_{0} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$