Total No. of Questions—8]

[Total No. of Printed Pages—4

| Seat |    |
|------|----|
| No.  | 20 |

[5352]-549

## S.E. (Electrical) EXAMINATION, 2018 NUMERICAL METHODS AND COMPUTER PROGRAMMING (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
  - (ii) Neat diagrams must be drawn wherever necessary.
  - (iii) Figures to the right indicate full marks.
  - (iv) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
  - (v) Assume suitable data, if necessary.
- 1. (a) List different types of operators used in 'C'. Give 2-3 examples of each type. [6]
  - (b) State the rules for identifying significant digits in a number and determine the same for: [6]
    - (*i*) 124.06
    - (*ii*) 0.02406

Or

- **2.** (a) Explain the following terms with suitable example: [6]
  - (i) Truncation error
  - (ii) Round off error
  - (iii) Chopping error
  - (iv) Relative error.

- (b) Using Birge Vieta method find the root of the equation  $x^4 2x^3 4x + 4 = 0$  with initial approximation 0.5. Perform two iterations. [6]
- 3. (a) Using N-R method find the real root of the equation  $x^3 \sin x + 1$  with  $x_0 = -2$ . Perform 4 iterations. [6]
  - (b) The following table gives the population of a town during last 6 census. Using Newton's backward interpolation formula determine the population in the area 1954: [7]

| Year Pop             | ulation in     |  |  |  |
|----------------------|----------------|--|--|--|
| Thousands            |                |  |  |  |
| 1911                 | 12             |  |  |  |
| 1921                 | 15             |  |  |  |
| 1931                 | 20             |  |  |  |
| 1941                 | 27             |  |  |  |
| 1951                 | 39             |  |  |  |
| 1961                 | 52             |  |  |  |
| 1931<br>1941<br>1951 | 20<br>27<br>39 |  |  |  |

Or

4. (a) Explain with neat figure Regula Falsi method for solution of transcendental equation. [6]





- 5. (a) Explain modified Euler's method for solution of ordinary differential equation. Draw suitable diagram. [6]
  - (b) Evaluate  $\int_{1}^{1.8} \frac{e^{x} + e^{-x}}{2} dx$  using Simpson's  $\left(\frac{1}{3}\right)^{rd}$  rule taking h = 0.2. [7]

Or

- 6. (a) Using 4th order RK method solve  $\frac{dy}{dx} = \sqrt{x^2 + y}$  at x = 0.2 with x(0) = 0.8 and h = 0.2.
  - (b) Derive Trapezoidal rule for numerical integration as a special case of Newton's Cote formula. [6]
- 7. (a) Using Jacobi iterative method, obtain solution of the following system. Perform 5 iterations: [6]

$$27x + 6y - z = 85$$
  
 $6x + 15y + 2z = 72$   
 $x + y + 54z = 110$ 

take

$$X^{(0)} = Y^{(0)} = Z^{(0)} = 0.$$

(b) Explain Gauss Seidal iterative method of solution of system of linear simultaneous equation. [6]

Or

8. (a) Solve the following system of equation using Gauss elimination method: [6]

$$\begin{bmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & -4 & 8 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 4 \end{bmatrix}$$

(b) Explain Gauss Jordan method to solve the system to linear simultaneous equation. [6]

A Stranger of the stranger of