Total No. of Questions—8] [Total No. of Printed Pages—5	
Seat No. [5252]-541	2
S.E. (Elec./Inst. & Cont.) (First Semester) EXAMINATION, 2017	
ENGINEERING MATHEMATICS-III	
(2015 PATTERN)	
Time : Two Hours Maximum Marks : 50	
N.B. :- (i) Figures to the right indicate full marks.	
(<i>ii</i>) Neat diagrams must be drawn wherever necessary.	
(<i>iii</i>) Use of electronic pocket calculator is allowed.(<i>iv</i>) Assume suitable data, if necessary.	
 (<i>iv</i>) Assume suitable data, if necessary. 1. (a) Solve any two : [8] 	
(1) $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - 4y = 6e^{-2x}$	
(2) $(D^2 + 1)y = 2 \cot x$ by variation of parameters method. (3) $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + 3y = \log x$.	
(b) Solve by Laplace transform method : $\frac{d^2y}{dt^2} + y = t$ [4]	
with $y(0) = 1$, $y'(0) = -2$ Or	
2. (a) A capacitor of 10^{-3} farads is in series with an emf of 20V.	
and an inductor of 0.4 H. At $t = 0$, the charge Q and current	
I are zero, find Q at any time t. [4]	
P.T.O.	

(b) Solve any one : [4]
(1)
$$L\left[e^{-tt}\int_{0}^{t} t\sin 3t dt\right]$$
.
(2) $L^{-1}\left[\frac{1}{s^{2}(s^{2}+1)}\right]$ by convolution theorem.
(c) Find Laplace transform of :
 $[t^{4} U(t-2)]$
3. (a) Show that : [4]
 $\int_{0}^{s} \frac{\lambda \sin \lambda x}{(4+\lambda^{2})(9+\lambda^{2})} d\lambda = \frac{\pi}{10}(e^{-2x} - e^{-3x}).$
(b) Attempt any one : [4]
(i) Find Z-transform of $f(k) = \begin{cases} 2k & k < 0 \\ \left(\frac{1}{2}\right)^{k} & k = 0, 2, 4, 6, ..., \\ \left(\frac{1}{3}\right)^{k} & k = 1, 3, 5, ..., \end{cases}$
(ii) Find $Z^{-1}\left(\frac{z(z+1)}{z^{2}-2z+1}\right), |z| > 1.$
(c) If directional derivative of $\phi = axy + byz + czx$ at (1,1,1) has maximum magnitude 4 in direction parallel to x-axis, find a, b and c. [4]

[5252]-541

4. (a) Prove (any one) :

(i)
$$\nabla \times \left(\frac{\overline{a} \times \overline{r}}{r^n}\right) = \frac{2-n}{r^n}\overline{a} + \frac{n(\overline{a} \cdot \overline{r})\overline{r}}{r^{n+2}}$$

(ii) $\nabla^2 \left(\nabla \cdot \left(\frac{\overline{r}}{r^2}\right)\right) = \frac{2}{r^4}.$

- (b) Find the tangent to the curve : [4] $x = t^2 + 1$, y = 4t - 3, $z = 2t^2 - 6t$ at t = 1 and t = 2.
- (c) Solve the difference equation : [4] $12 f(k + 2) - 7 f(k + 1) + f(k) = 0 k \ge 0, f(0) = 0,$ f(1) = 3.

5. Attempt any two :

(a) If $\overline{F} = (2x + y^2)\overline{i} + (3y - 4x)\overline{j}$ evaluate $\int_C \overline{F} \cdot d\overline{r}$ along the parabolic curve $y = x^2$ joining (0, 0) and (1, 1). [6]

curve $y = x^2$ joining (0, 0) and (1, 1). Evaluate $\iint (\nabla \times \overline{F}) \cdot d\overline{s}$ where $\overline{F} = (x^3 - y^3) \overline{i} - xyz \overline{j} + y^3 \overline{k}$ and s

is the surface $x^2 + 4y^2 + z^2 - 2x = 4$ above x = 0. [6] Evaluate :

$$\iint\limits_{\mathbf{S}} xz^2 dy dz + (yx^2 - z^2) dz dx + (2xy + y^2 z) dx dy$$

where S is the surface enclosing a region bounded by hemisphere $x^2 + y^2 + z^2 = 4$ above XoY-plane. [7]

[5252]-541

(*b*)

(c)

Р.Т.О.

[4]

- **6.**Attempt (any two) :
 - (a) Using Green's theorem evaluate $\int_{c} \overline{F} \cdot d\overline{r}$ where $\overline{F} = 3y \,\overline{i} + 2x\overline{j}$ and c is the boundary of region bounded by y = 0, $y = \sin x$, x = 0, $x = \pi$. [6]
 - (b) Evaluate $\iint_{S} (\nabla \times \overline{F}) \cdot d\overline{S}$ where $\overline{F} = (x^2 + y 4)\overline{i} + 3xy\overline{j} + (2xz + z^2)\overline{k}$ over the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above XoY plane. [6]
 - (c) Using Gauss divergence theorem evaluate the surface integral

$$\iint_{\mathbf{S}} (4xz \ \overline{i} \ - \ y^2 \overline{j} + yz \overline{k}). \ d\overline{\mathbf{S}}$$

over the cube bounded by the plane x = 0, x = 2, y = 0,y = 2, z = 0, z = 2. [7]

- 7. (a) If $v = \frac{-y}{x^2 + y^2}$ find u such that f(z) = u + iv is analytic. Determine f(z) in terms of z. [4]
 - (b) Evaluate $\int_{c} \frac{4z^2 + z}{(z-1)^2} dz$, where c is the circle |z 1| = 2. [5]
 - (c) Find the bilinear transformation which maps the points 1, i, 2i of z-plane onto points -2i, 0, 1 of w-plane. [4]

[5252]-541

8. (a) Show that
$$u(x, y) = y + e^x \cos y$$
 is harmonic function. Find
its harmonic conjugate. [4]
(b) Evaluate $\int \frac{2z^3 + z + 5}{(z-5)^3} dz$ where C is $\frac{x^2}{16} + \frac{y^2}{4} = 1$. [5]
(c) Find the map of the straight line $2y = x$ under the
transformation $w = \frac{2z-1}{2z+1}$. [4]