Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5152]-544

S.E. (Electrical) (I Sem.) EXAMINATION, 2017 MATERIAL SCIENCE

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

Physical Constants :-

- (i) Angstrom Unit (AU) = 1×10^{-10} metres.
- (ii) Boltzmann's Constant (k) = 1.380×10^{-23} joule.degree⁻¹.
- (iii) Charge on Electron (e) = 1.601×10^{-19} coulomb.
- (iv) Mass of Electron (m) = 9.107×10^{-31} kg.
- (v) Electron volt (eV) = 1.602×10^{-19} joules.
- (vi) Mass of Proton $(m_p) = 1.627 \times 10^{-27} \text{ kg.}$
- (vii) Velocity of light (c) = 2.998×10^8 m/sec.
- (viii) Dielectric Constant of free space $(\epsilon_0) = 8.854 \times 10^{-12}$ F/m,
- (ix) Permeability of free space $(\mu_0) = 4\pi \times 10^{-7}$ H/m.
- (x) Debye Unit = 3.33×10^{-30} coulomb.metre.

SECTION I

- 1. (a) Write short note on Polar and Non-Polar dielectric materials with examples. [6]
 - (b) State the properties & applications of: [6]
 - (i) Pressboard
 - (ii) Varnish.

P.T.O.

2.	(<i>a</i>)	What are different mechanisms of polarization? Explain any
		two with diagram. [6]
	(<i>b</i>)	Explain various factors which affect breakdown in solid insulating
		materials. [6]
		6
3.	(a)	What do you mean by spontaneous magnetization? Hence derive
		Curie-Weiss law for ferromagnetic materials. [6]
	(<i>b</i>)	Write materials used for Super-capacitors, Solders and Super
	V.	Conductors. [6]
		Or
4.	(a)	In a magnetic material, an application of a magnetic field of
		3×10^5 A/m results into a flux density of 1.2 tesla. Calculate
		its permeability, susceptibility & magnetisation. [6]
	<i>(b)</i>	Describe properties and applications of Kanthal and
		Bronze. [6]
		6, 7.
5.	(a)	Describe with neat diagrams : [8] (i) Molecular Machines (ii) Single Electron transistor
		(i) Molecular Machines
	•	(ii) Single Electron transistor
	(<i>b</i>)	What are different types of batteries used in electric hybrid
		vehicles? Write their properties. [5]
[5152]-544	2

- 6. diagram - BN Nanotubes. Explain with neat $\lceil 7 \rceil$ (a)
 - Explain with neat diagram, chemical reaction and applications (*b*) of: [6]
 - Lithium-ion (*i*)
 - Sodium-Sulphur. (ii)
- 7. With neat circuit diagram & phasor diagram, explain (a) measurement of dielectric loss angle (tan δ) by Schering Bridge as per IS 13585-1994. $\lceil 7 \rceil$
 - With neat sketch, explain how flux density is measured with (b) the help of Gauss meter. [6]

- Explain the step by step method of finding dielectric strength 8. (a) of transformer oil with a neat diagram as per IS 6798. [6]
 - Explain the method of finding dielectric strength of air using (*b*) sphere gap voltmeter with a neat diagram as per IS 2584. [7]