Total No. of Questions : 8]

P3337

[5461]-597

SEAT No. :

[Total No. of Pages : 3

B.E. (Computer Engineering) DATA MINING AND WAREHOUSING (2015 Course) (Semester - I) (End Sem.) (410244D)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Assume suitable data if necessary.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.

Q1) a) For the given attribute AGE values : 16, 16, 180, 4, 12, 24, 26, 28, apply following Binning technique for smoothing the noise. [6]

- i) Bin Medians
- ii) Bin Boundaries
- iii) Bin Means
- b) Differentiate between Star schema and Snowflake schema. [6]
- c) Calculate the Jaccard coefficient between Ram and Hari assuming that all binary attributes are a symmetric and for each pair values for an attribute, first one is more frequent than the second. [8]

			5			
Object	Gender	Food	Caste	Education	Hobby	Job
Hari	M(1)	V(1)	M(0)	L(1)	C(0)	N
		·				(0)
Ram	M(1)	N(0)	M(0)	I(0)	T(1)	N
	5				2	(0)
Tomi	F(0)	N(0)	H(1)	L(1)	C(0)	Y
				C	1.01	(1)
			OR			

Q2) a)

Explain following attribute types with example.

- i) Ordinal
- ii) Binary
- iii) Nominal
- b) Differentiate between OLTP and OLAP with example. [6]

P.T.O.

[6]

c) Calculate the Euclidean distance matrix for given Data points.

point	X	у	
p1	0	2	
p2	2	0	
p3	3	1	5
p4	5		E.

Q3) a) A database has 6 transactions. Let minimum support = 60% and Minimum confidence = 70% [8]

Transaction ID	Items Bought
(TI	$\{A, B, C, E\}$
T2	$\{A, C, D, E\}$
	$\{B, C, E\}$
T4	$\{A, C, D, E\}$
T5	$\{C, D, E\}$
T6	$\{A, D, E\}$

i) Find Closed frequent Itemsets

- ii) Find Maximal frequent itemsets
- iii) Design FP Tree using FP growth algorithm
- b) Explain with example Multi level and Constraint based association Rule mining. [5]
- c) How can we improve the efficiency of a-priori algorithm.

OR

- Q4) a) Consider the Market basket transactions shown below. Assuming the minimum support = 50% and Minimum confidence = 80% [8]
 - i) Find all frequent item sets using Apriori algorithm
 - ii) Find all association rules using Apriori algorithm

ł		
	Transaction ID	Items Bought
	T 1 ×	{Mango, Apple, Banana, Dates}
	T2	{Apple, Dates, Coconut, Banana, Fig}
	T3	{Apple, Coconut, Banana, Fig}
	T4	{Apple, Banana, Dates}

b) Explain FP growth algorithm with example.

[5] [4]

[4]

- c) Explain following measures used in association Rule mining
 - i) Minimum Support
 - ii) Minimum Confidence
 - iii) Support
 - iv) Confidence

[5461]-597

2

Q5) a) Explain the training and testing phase using Decision Tree in detail. Support your answer with relevant example. [8] Apply KNN algorithm to find class of new tissue paper (X1 = 3, **b**) X2 = 7). Assume K = 3[5] X2 =Strength(kg/sq.meter) Y =Classification X1 = Acid Durability (secs)Bad 7 7 Bad 3 Good Good 4 Explain the use of regression model in prediction of real estate prices.[4] c) OR What is Bayesian Belief Network. Elaborate the training process of a **Q6)** a) Bayesian Belief Network with suitable example. [8] Explain K-nearest neighbor classifier algorithm with suitable application. b) [5] Elaborate on Associative Classification with appropriate applications.[4] c) **Q**7) a) Discuss the Sequential Covering algorithm in detail. [8] Explain following measures for evaluating classifier accuracy b) [4] Specificity i) Sensitivity ii) Differentiate between Wholistic learning and Multi perspective learning.[4] c) OR How is the performance of Classifiers algorithms evaluated. Discuss in **08)** a) detail. [8] Discuss Reinforcement learning relevance and its applications in real b) time environment. [4] Explain following measures for evaluating classifier accuracy [4] c) ◆ 140.21 ◆ 140.21 (140.21 (140.21) (140.2 i) Recall Precision ii)

[5461]-597

3