Total No. of Questions :10]	.96	SEAT No. :
P3625	[5560]-581	[Total No. of Pages :3

T. E. (Information Technology) THEORY OF COMPUTATION (2015 Pattern) (Semester-I)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Assume suitable data if necessary.
- Q1) a) Convert the following NFA with \in -moves into NFA without \in moves.[6]

- b) Give formal definitions for the following
 - i) Deterministic finite automata
 - ii) Moore machine
 - iii) Reachable states of P
 - iv) Acceptance of a string by FA

OR

Q2) a) Construct FA for the following language L.

L=[w/w is a binary word of length 4i, i>=1 such that each consecutive block 4 bits contains at least 2 0's] [8]

b) Give difference between moore & mealy machine. [2]

P.T.O.

Show that. **Q3)** a)

b)

[6]

[4]

- $(a.b)^* \neq a^*.b^*$ i)
- $(a+b)^* = (a+b)^* + (a+b)^*$

Convert the following grammar to GNF

 $S \rightarrow ABA |AB|BA |AA|A|B$

 $A \rightarrow aA/a$

 $B \rightarrow bB/b$

OR

Write CFG for the following languages. **Q4)** a)

[6]

$$\mathbf{L} = \left\{ 0^{i} 1^{j} 0^{k} \mid j > i + k \right\}$$

$$L = \left\{ 0^{i} 1^{j} 2^{k} \mid i = j + k \right\}$$

Convert the following grammar to CNF.

[4]

$$S \rightarrow bA|aB$$

 $A \rightarrow bAA|as|a$

 $B \rightarrow aBB|bs|b$

Construct PDA that accepts the language by the following CFG. **Q5)** a) $S \rightarrow SS|(S)|()$

Construct post Machine that accepts the following language. b)

$$L = \left\{ a^n b^n a^n \mid n \ge 0 \right\}$$

Show that: $L = \{a^n b^n c^n \mid n \ge 1\}$ not a CFL. Q6) a)

[5]

Construct post machine that accepts following language

[5]

$$L = \left\{ a^n b^m \mid n \ge 0, m \ge 0 \right\}$$

Construct PDA that accepts following language $L = \{a^n b^n \mid n \ge 0\}$. c)

Write simulation for string 'aaabbb'

Construct a TM to compute $L = \{a^n b^{2n} \mid n > 0\}$ Write simulation for the **Q7)** a) string. abb ii) aabbbb i) [10]Design TM for the language $L=\{0^{2n}\}$ over $\Sigma=\{0,1\}$. b) [8] OR Design a TM that multiplies two unary numbers over $\Sigma = \{1\}$. Write **Q8)** a) simulation for the string 11&111. [8] Design TM to accept the set L of all strings formed with 0&1 and having b) substring '000'. Differentiate between FA & TM. c) [2] **Q9**) a) Prove that [8] AREX= {<R,W>| R is a regular expression that generates string w} is a decidable language. ECFG= $\{ \langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset \}$ is a decidable language. ii) b) Explain class P with two examples. Prove that $ATM = \{ \langle m, w \rangle | M \text{ is a TM and accepts w} \}$ is undecidable [8] *Q10*)a) Explain post correspondance problem. [8] b)