Total No.	of Questions : 9]		SEAT No. :						
PD-408	0		[Total No. of Pages : 5						
	[6402	1.40							
C T			han Caian as P Daviers						
5.E.	S.E. (Computer/I.T./AI & ML/Computer Science & Design/								
Computer Science)									
ENGINEERING MATHEMATICS - III									
	(2019 Pattern) (Seme	ester - J	(V) (207003)						
Time: 21/2			[Max. Marks : 70						
Instruction 1)	ns to the candidates : Q.1 is compulsory.								
2)	Attempt Q.2 OR Q.3, Q.4 OR Q.5, Q	Q.6 Or Q.7,	Q.8 OR Q.9.						
3)	Neat diagrams must be drawn where		ary.						
<i>4</i>) <i>5</i>)	Figures to the right side indicates for								
<i>6</i>) (Use of electronic pocket calculator Assume Suitable data, if necessary.	is allowed.	2						
	×	0,0							
<i>Q1</i>) Wri	ite the correct option for the fo	llowing n	nultiple choice questions :						
a)	X is normally distributed. The m	nean of X	is 15 and standard deviation 3.						
	Given that for $Z = 1$, $A = 0.3413$	then P(X	$(2 \ge 12)$ is given by: [2]						
	i) 0.3413	ii) ().8413						
	iii) 0.1587	iv) ().6587						
b)	Among 64 off springs of a certain								
	10 were black and 20 were wh								
	number should be in the ratio 9 are	. 3 . 4. EX	[2]						
	i) 36, 12, 16	ii) 3	32, 8, 24						
	iii) 36, 16, 12	iv) 3	34, 10, 20						
c)	Using Newton - Raphson method								
C)	equation $x^3 + 2x - 5 = 0$ in $(1, 2)$ i								
(i) 0	ii)	3						
	iii) 1.5	iv) 4	16.						
	*	9.							
		OX.	P.T.O.						
		8.							
		V							

d)		[2]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	i) 0 ii) 2	?
	iii) 1 iv) $\frac{1}{2}$	
e)	The first central moment of a distribution about the mean is	[1]
	i) ii) always positive	
	iii) 0 iv) -1	
f)	If $f(x)$ is continuous on $[a, b]$ and $f(a) f(b) < 0$ then to find a root	of
	$f(x) = 0$, initial approximation x_0 by bisection method is	[1]
7	i) $\frac{a-b}{2}$ ii) $\frac{f(a)+f(b)}{2}$	
	iii) $\frac{a+b}{2}$ iv) $\frac{a-b}{a+b}$	^
Q2) a)	The first four moments about the working mean 30.2 of a distribution	TO)
Q 2) a)	The first four moments about the working mean 30.2 of a distribution a 0.255, 6.222, 30.211, 400.25. Calculate the first four central moments about the mean.	nts
b)	Obtain regression line of x on y for the following data:	[5]
	x 2 3 5 7 9 10 12 15	
	y 2 5 8 10 12 14 15 16	
c)	Fit a linear curve $y = ax + b$ to the data :	[5]
	x 0 2 4 6 8 12 20	
/	y 10 12 18 22 20 30 30	
•	OR OR	
F. (40.23 ·		
[6402]-4	2	

- Calculate the coefficient of correlation from the information n = 10, **Q3**) a) $\Sigma x = 40, \ \Sigma x^2 = 190, \ \Sigma y^2 = 200, \ \Sigma xy = 150, \ \Sigma y = 40$ [5]
 - Fit a curve $y = ax^b$ for the data. b) [5] 2000 3000 5000 6000 \boldsymbol{x} 17 18
 - If regression line of x on y is $9x + y = \lambda$ and the regression line of y on x c) is $4x + y = \mu$ where means of x and y are 2 and -3 respectively. Find the values of λ and μ and the coefficient of correlation between x any y. [5]
- **04**) a) Two cards are drawn from a well shuffled pack of 52 cards. Find the probability that they are both Queens if: [5]
 - the first card drawn is replaced

y

- ii) the first card drawn is not replaced
- b) A series of five one-day matches is to be played between India and Australia. Assuming that the result of all the five matches is independent and the probability of India's win in each match is 0.6, find the probability that India wins the series. [5]
- A life time of a certain component has a normal distribution with mean of c) 400 hours and standard deviation of 50 hours. Assuming a normal sample of 1000 components, find number of components whose life time lies between 340 to 465 hours.

[Given : A (z = 1.2) = 0.3849, A(z = 1.3) = 0.4032]

OR

- The mean and variance of a binomial distribution are 4 and 2 respectively. **Q5**) a) Find $P(r \le 2)$. [5]
 - Number of road accidents on a high-way during a month follows a Poisson b) distribution with mean 5. Find the probability that in a certain month number of accidents on the highway will be [5]
 - less that 3 **i**)
 - ii) more than 3

c) A die is tossed 300 times gave the following result.

			. Os	,		
Score	1	2	.30	4	5	6
Frequency	43	49	556	45	66	41

Is the data consistent at 5% level of significance with hypothesis that the die is unbiased?

[5]

(Given: $\chi^2_{5,0.05} = 11.07$)

- Q6) a) Using method of bisection, find the cube root of 69. (five iterations) [5]
 - b) Find the root of the equation $x e^{-x} = 0$ that lies between 0.5 and 1 by Newton Raphson method correct up to four decimal places. [5]
 - c) Solve by Gauss Seidel method, the following system of equations. [5]

$$8x_1 + 3x_2 + 2x_3 = 13$$

$$x_1 + 5x_2 + x_3 = 7$$

$$2x_1 + x_2 + 6x_3 = 9$$

OR

Q7) a) Solve the following system by Gauss elimination method.

$$2x_{1} + x_{2} + x_{3} = 10$$

$$3x_{1} + 2x_{2} + 3x_{3} = 18$$

$$x_{1} + 4x_{2} + 9x_{3} = 16$$

b) Solve the following system of equations by Jacobi's iteration method.[5]

$$20x_1 + x_2 - 2x_3 = 17$$

$$3x_1 + 20x_2 - x_3 = 18$$

$$2x_1 - 3x_2 + 20x_3 = 25$$

c) Solve the equation $f(x) = x - e^{-x}$ by Regula-Falsi method with the initial approximations 0.5 and 1 correct up to three decimal places. [5]

Using Newton's backward difference formula find the value of y at **Q8**) a) x = 3.5 for following data: [5]

х	0	1	2	3	4
у	3	2	3	6	11

- Trule to find the value of $\int_{1}^{2} \frac{1}{x} dx$. Take h = 0.25. Use simpson's b) Correct the solution upto fourth decimal place. [5]
- Use Euler's method to solve the equation $\frac{dy}{dx} = 1 + xy$ with y(0) = 1 and c) tabulate the solution for x = 0 to x = 0.4. Take h = 0.1 and correct the solution upto fourth decimal place. [5]

- Runge-Kutta method of fourth order **Q9**) a) solve $\frac{dy}{dx} = x^2 + y^2$, y(1) = 1.5 in the interval (1, 1.1) with h = 0.1 and correct the solution upto fourth decimal place. [5]
 - Given $\frac{dy}{dx} = x^2 + y$, y(0) = 1 determine using modified Euler's method b) the value of y when x = 0.05. Take h = 0.05 and correct the solution upto fourth decimal place. Use two iterations only.
 - eren de la companya del companya de la companya del companya de la companya del companya del companya de la companya del companya de la compa Find the value of y for $x \ge 0.5$ using Newton's forward difference formula c) for following data:

	x	0	3	2	3	4
•	у	1	5	25	100	250