Seat	
No.	20

[5352]-563

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2018 DATA STRUCTURE & ALGORITHMS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Draw neat diagrams wherever necessary.
 - (iii) Assume suitable data, if necessary.
- 1. (a) Define and explain the following terms:
 - (i) Data
 - (ii) Data structure
 - (iii) Algorithm.
 - (b) Give pseudo C/C++ code to reverse the string. [3]
 - (c) Explain the divide and conquer strategy with suitable example.

 Comment on its time complexity. [6]

Or

- 2. (a) Define and explain the following terms: [4]
 - (i) Sequential organization
 - (ii) Linear data structure
 - (iii) Ordered list
 - (iv) Sparse matrix.

[3]

(D)	Explain polynomial representation using an array with suitable
	example. [2]
(<i>c</i>)	Explain the Asymptotic notation Big O, Omega and Theta with
	suitable example. [6]
3. (a)	Write a pseudo C/C++ code to insert node into a singly
	linked list. [3]
(<i>b</i>)	Explain Generalised linked list with suitable example. [3]
(<i>c</i>)	Explain evaluation of postfix expression using stack with
	suitable example. [6]
	Or
4. (a)	Give pseudo C/C++ code to implement the following operations
	on linked stack: [4]
	(i) Create
	(ii) Push data.
(<i>b</i>)	Explain the stepwise conversion using stack for the given infix
(-)	expression to the postfix expression : [2]
	A * B + C * D.
(c)	Write pseudo C/C++ code for polynomial addition using singly
(6)	linked list. [6]
	Tiffked list.
5. (a)	Define the following terms with example: [6]
	(i) Linear queue
	 (i) Linear queue (ii) Circular queue (iii) Priority queue.
	(iii) Priority queue.
[5352]-563	2

(<i>b</i>)	Write pseudo C/C++ code to implement priority queue
	operations. [7]
	Or Or
(a)	Explain linear queue and circular queue with suitable
	example. Give the advantages of circular queue over linear
	queue. [6]
(<i>b</i>)	Write pseudo C/C++ code to implement linked queue. [7]
	S. S
(a)	Sort the following numbers using insertion sort:
	55, 85, 45, 11, 34, 05, 89, 99, 67.
	Discuss its time complexity and space complexity. [6]
(<i>b</i>)	Explain sequential search and binary search with appropriate
	example. Comment on their data organization, time complexity
	and space complexity. [7]
	Or
(a)	Explain Merge sort using the following example:
	18, 13, 12, 22, 15, 24, 10, 16, 19, 14, 30.
	Discuss its time and space complexity. [6]
(<i>b</i>)	Write a pseudo C/C++ code to sort the data using bucket
	sort in ascending order. [7]
•	
	C, %.
	sort in ascending order. [7]
)]	3
2]-563	o

6.

7.

8.