Total N Seat	o. of Questions—8]	[Total No. of Printed	Pages—3
No.		[525	2]-562
	S.E. (Computer Engine	eering) (First Semester)	
EXAMINATION, 2017			
DIGITAL ELECTRONICS AND LOGIC DESIGN			
(2015 PATTERN)			
Time :	Two Hours	Maximum Ma	arks : 50
<i>N.B.</i> :−	- (i) Attempt Q. 1 or Q	. 2, Q. 3 or Q. 4, Q. 5	or Q. 6 ,
	Q. 7 or Q. 8.		
	(ii) Neat diagrams must	be drawn wherever neces	ssary.
	(iii) Assume suitable data	a, if necessary.	
	• .		
1. (<i>a</i>)	Design and implement	Binary to Gray code conve	erter using
	logic gate.		[6]
<i>(b)</i>	Explain look ahead car	ry generator in detail.	[4]
(c)	Draw basic internal stru	cture of Decade counter IC	7490 and
	explain its operation.		[2]
		Or Sol	
2. (<i>a</i>)	Implement full adder u	using 8:1 Multiplexer and	draw the
	diagram.	R 30	[6]
<i>(b)</i>	Write a short note on	Johnson counter.	[4]
(<i>c</i>)	Convert the following fl	lip-flop 💽 🔥	[2]
	D-Flip-Flop to T-Flip-Flo	pp	
		D.	P.T.O.

- Design the ASM chart for a 2-bit binary counter having one 3. (a)enable line E such that when : [6] E = 1 (count enabled) and E = 0 (counting is disabled).
 - A combinational Circuit is defined by the following *(b)* function : [6] $F1(A,B,C) = \Sigma m \ (0,1,3,7)$ $F2(A,B,C) = \Sigma m (1,2,5,6)$ Implement this circuit with PLA. Or
- Write VHDL code for full adder using structural style of 4. (a)Modeling (Declare half adder as a component) and also draw truth table and diagram of full adder. [6]
 - Explain entity declaration for XOR gate [2]*(b)*
 - A combinational circuit is defined by the function : (c)[4]F1 = $\Sigma m(0,1,3,4)$ Implement this circuit with PAL.

Draw and explain the circuit diagram of CMOS Inverter. 5. (a)

Or

(b) Define the following terms and mention the standard values for TTL logic Family : [8] in the the

[5]

- Noise Margin 1.
- 2. Fan Out
- 3. Power Dissipation
- Propagation Delay. 4.

Or

Draw and explain 2-input NAND TTL logic gate with totem (a)6. pole output driver. [7]

[5252]-562

- Give the classification of logic family (*b*) 1.
 - Explain the advantage of open collector output. 2.

[6]

[4]

[3]

- 7. Explain the features of 8051 Microcontroller (a)
 - What are the different addressing Modes in 8051 ? Give example *(b)* of each. [6]
 - Explain the following pins of 8051 : (c)

ALE 1. XTAL 2. 3.

EA

Or

- Describe different timer modes of 8051 Microcontroller. Draw 8. (a)format of TMOD register. [7]
 - Explain the following instructions with respective to 8051 and *(b)* give example of each : [6]
 - 1. PUSH
 - 2. MUL
 - 3. CPL.

[5252]-562