Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	0.0

[5152]-562

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2017 DIGITAL ELECTRONICS AND LOGIC DESIGN (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Assume suitable data if necessary.
- 1. (a) Implement the expression using a 8 : 1 multiplexer [4] $f(a, b, c, d) = \sum m(0, 2, 3, 6, 8, 9, 12, 14)$.
 - (b) What is the difference between combinational and sequential circuits?
 - (c) Simplify the following logic function using the Quine-McCluskey minimization technique: [6]

 $Y(A, B, C, D) = \Sigma m(0, 1, 3, 7, 8, 9, 11, 15).$

Or

- 2. (a) Explain in detail look ahead carry generator [6]
 - (b) Design Mod-24 counter using 7490 [2]
 - (c) Design a sequence detector using MS J-K flip-flop sequence is 1101. [4]

P.T.O.

3.	(a) Draw ASM chart for 2-bit UP counter using multiplexe		oller
		method.	[8]
	(<i>b</i>)	List any two medeling style of VHDL	[2]
	(c)	Compare concurrent and sequential statement in VHDL	[2]
		Or	
4.	(a)	Design 4 input and 6 output combinational circuit using P	LA.
		The input variables are A, B, C and D:	[6]
		$Y1 = \Sigma m(0, 3, 5, 6, 9, 10, 12, 15)$	
		$Y2 = \Sigma m(0, 1, 2, 3, 11, 12, 14, 15)$	
		$Y3 = \Sigma m(0, 4, 8, 12)$	
	· De	$Y4 = \Sigma m(0, 2, 3, 5, 7, 8, 12, 13)$	
		$Y5 = \Sigma m(0, 1, 3, 4, 5, 6, 11, 13, 14, 15)$	
		$Y5 = \Sigma m(1, 2, 6, 8, 15).$	
	(<i>b</i>)	Draw block diagram of PLA device and explain.	[6]
5.	(a)	Explain characteristics of digital ICs (any four).	[4]
	(<i>b</i>)	Explain operation of TTL NAND gate.	[6]
	(c)	Explain TTL open collector	[3]
			7
		Or	Y
6.	(a)	What is addressing mode? Identify and justify addressing mode	des
		of the following 8051 instructions:	[6]
		of the following 8051 instructions: (i) MOVX A, @DPTR (ii) MOVC A, @ A+PC (iii) ADD A, #10	
		(ii) MOVC A, @ A+PC	
		(iii) ADD A, #10	
	•	(iv) MOV DPTR, #2550.	
	<i>(b)</i>	What is microcontroller? Distinguish between microcontrol	oller
		and microprocessor.	[7]

[5152]-562

7.	(a)	Explain CMOS inverter.	[4]
	(<i>b</i>)	Why wired logic is not possible in CMOS operation.	[4]
	(c)	Explain tristate logic	[5]
		Or	
8.	(a)	Explain the physical structure and significances of all I/O	ports
		of 8051 microcontroller.	[7]
	(<i>b</i>)	Give significance of the following pins in 8051:	[6]
		(i) PSEN#	
		(ii) EA#/VPP	
	~	(iii) ALE	
	~	(iv) TxD	
		(v) INTO#	
		(vi) RST.	
			20
		9.	3
		38.	
		\mathfrak{S}'	

[5152]-562