Total No. of Questions : 6]	SEAT No.:	
P5847	[Total	No. of Pages : 4

BE/Insem./Oct.-506 B.E. (Civil) ADVANCED CONCRETE TECHNOLOGY (2015 Pattern) (Semester - I) (Elective - I)

Time	e:1 F	Hour]	[Max. Marks: 30
Inst	ructio	ons to the candidates:	
	1)	Answer Q1 or Q2, Q3 or Q4, and Q5 or Q6.	·60.
	2)	Neat diagrams must be drawn wherever necessary.	
	3)	Figures to the right indicate full marks.	
	4)	Your answers will be valued as a whole.	
	5)	Use of electronic pocket calculator is allowed.	
Q 1)	a)	What is heat of hydration? Explain the factors	affecting heat of
		hydration.	[4]
	b)	What is copper slag? Explain its effect on workab	oility & strength of
		concrete.	[6]
		OR	
<i>Q2)</i>	a)	"Manufactured sand is best alternative to natural san	d", Justify. [4]
~	b)	What are the factors affecting strength of concerete? De	
	0)	of gel space ratio on strength of concrete.	[6]
		or gor space ratio an extensity or concrete.	[~]
Q3)	a)	Write a short note on structural light weight concrete	? [4]
<i>Q</i> 3)			
	b)	Write a short note on:	[6]
		i) Gap graded concrete	
		ii) Mass concrete	7)
		OR	
Q4)	a)	What are the different types of industrial waste n	naterials useful for
V		construction industry? Explain any one waste mater	/ 1.
		in detail.	[4]
	b)	Write a short note on:	[6]
	,	i) Ultra light weight concrete	(-)
		ii) Vacuum concrete	

- **Q5)** A) Using Indian Standard recommended guidelines, design a concrete mix for a reinforced concrete structure to be subjected to the very severe exposure conditions for the following requirements: [10]
 - a) Stipulations for proportioning
 - i) Grade designation: M45
 - ii) Standard deviation, S=5
 - iii) Type of cement: OPC 43 grade conforming to IS 8112
 - iv) Maximum water cement ratio: 0.45
 - v) Workability: 125 mm (slump)
 - vi) Degree of supervision: Good
 - vii) Type of aggregate: Crushed Angular aggregate,
 - viii) Minimum Cement content: 320 kg/m3
 - ix) Method of concrete placing pumping
 - x) Chemical admixture type. Super plasticizer having efficiency 25 %
 - xi) Assume dose of admixture 1.2% by weight of cement.
 - b) Test data for materials
 - i) Specific gravity of cement: 3.15
 - ii) Specific gravity of admixture: 1.1
 - iii) Specific gravity of
 - 1) Coarse aggregate 2.80
 - 2) Fine aggregate 2.70
 - iv) Water absorption
 - 1) Coarse aggregates 0.5%
 - 2) Fine aggregates 1.00%
 - v) Free surface moisture
 - 1) Coarse aggregates Nil
 - 2) Fine aggregates Nil

vi) Sieve analysis

1) Coarse aggregate:

IC A 1 : C D . CD:CC . D 1					D 1	
IS	A	nalysis of	Percentage of Different			Remarks
	3	-0%				
Sieve sizes	C	oarse	Fractions			
(mm)	ag	gregate				
	Fr	action			9.	
2.7	I	II	I	II	Combined	Confirming
			(60%)	(40%)	(100%)	
20	100	100	60	40 %	100	of Table 2
10	0	71.2	0	28,5	28.5	of IS 383
4.75		9.40		3.7	3.7	
2.36		0	S			

²⁾ Fine aggregate: Conforming to grading zone II

c) Design considerations:

Table 1: From IS 10262; Maximum water content per cubic meter of concrete

Sr. No	Nominal Maximum size of	Maximum Water Content
	Aggregate (mm)	(kg)
i)	10	208
ii)	20	186
iii)	40	165

Table 2 : From IS 10262; Volume of Coarse Aggregate per Unit Volume of Total Aggregate

SI.	Nominal	Volume of Coarse Aggregate per			
No.	Maximum size of	Unit Volume of Total Aggregate			
	Aggregate (mm)	For Different Zones of Fine Aggregate			
		Zone	Zone	Zone	Zone
	2,8	IV	III	II	I
i)	10	0.50	0.48	0.46	0.44
ii)	20	0.66	0.64	0.62	0.60
iii)	40	0.75	0.73	0.71	0.69

OR

- **Q6)** a) Explain the role of NDT Testing in civil engineering structures.
 - b) Write a short note on:
 - i) Nuclear method.
 - ii) Ground penetration Radar.

[6]

[4]

