Total No. of Questions : 6]	S	EAT No. :
P1435		[Total No. of Pages : 2

TE/Insem/APR-105 T.E. (Civil) **ENVIRONMENTAL ENGINEERING-I** (2015 Pattern) (Semester - II)

Tim	e : 1	Hour] [Max. Marks: 30					
Instr	ructio	ns to the candidates :					
	<i>1)</i>	Answer Q.1 or 2, Q.3 or 4, Q.5 or 6.					
	<i>2)</i>	Neat diagrams must be drawn wherever necessary.					
	<i>3)</i>	Figures to the right side indicate full marks.					
	<i>4)</i>	Assume suitable data, if necessary.					
	5)	Use of Scientific calculator is allowed.					
Q1)	a) .	Convert the following sound pressures into decibel units: [5]					
	X	i) $P = 0.6$ microbars					
		ii) $P = 60$ microbars					
		iii) $P = 0.0006$ microbars					
		iv) $P = 6000$ microbars					
		v) $P = 0.06$ microbars					
	b)	Enlist any 4 equipments used for collecting particulate matter. Explain					
		with neat sketch - Settling Chamber. [2+2+1]					
		OR OR					
Q2)	a)	Calculate resultant noise level produced in workshop having 15 machines					
۷-)	u)	and each machine producing noise of 75 dB. [5]					
	b)	Define municipal solid waste management. Explain with neat sketch					
		anaerobic digestion process for management of MSW. [5]					
		tallations digestion process for management of risky.					
<i>Q3</i>)	a)	Draw the flow sheet of water supply scheme considering river as source.					
E		Explain function of each unit. [6]					
	b)	State the HDL and MPL values as per IS:10500 for drinking water with					
	<i>-</i>)	appropriate unit, for following parameters: [4]					
		i) pH ii) Total Alkalinity					
		iii) Chlorides iv) Nitrates					
		OR					

Year	1971	1981	1991	2001	2011
Population	20000	27000	33000	41000	50000

Estimate the population in the year 2051 by geometric increase method.

b) Explain the following terms:

[4

- i) Detention Time,
- ii) Design Period,
- iii) Average Water Demand and
- iv) Peak Water Demand
- **Q5)** a) Explain with neat sketch, working of a tube settler.

[3+1]

b) The maximum daily demand of water for a town is 125 MLD. Design Cascade aerator considering loading rate as 0.03 m²/m³/hr. Assume velocity of flow in collecting channel is 1m/sec. [6]

OR

- Q6) a) Design a rectangular sedimentation tanks, which supplies 1 MLD water to the Town. The sedimentation period is 3 hrs. The velocity of flow is 12 cm/min. Depth of water in a tank is 3.5 m.
 - b) Draw a flow sheet of conventional WTP in urban areas. Explain each unit in brief. [5]

